Animal Reproduction (AR)
https://www.animal-reproduction.org/article/doi/10.1590/1984-3143-AR2025-0106
Animal Reproduction (AR)
ORIGINAL ARTICLE

Hormone residues are not detected in zero water exchange biofloc system during tilapia masculinization even in higher feed input

Dara Cristina Pires; Érika Ramos de Alvarenga; Franklin Fernando Batista da Costa; Kelly Moura Keller; José Fernandes Bezerra Neto; Mariana Parrini Ferreira; Gabriela Lago Biscoto; Isabela Lopes Samary; Karen Beatriz Guerra Lima; Vinícius Monteiro Bezerra; Caroline Lopes de Melo; Lee Deyver Carvalho Pena Mansur; Williane Ferreira Menezes; José Fernando Paz Ramírez; Luiza Fujii Almeida; Daiana dos Reis Pelegrine; Marcelo Rezende Luz; Eduardo Maldonado Turra

Downloads: 0
Views: 5

Abstract

How intensive the masculinization period of Nile tilapia can be in biofloc technology (BFT) based on higher stocking densities and a zero-water exchange protocol to mitigate the environmental impact has not been studied yet and needs investigation. Thus, our objective was to determine the optimal stocking density for reduction of hormonal effluent in BFT, better growth and masculinization rate of Nile tilapia larvae, and lower total variable cost. Five stocking densities (1.5, 3, 4.5, 6, and 7.5 larvae ∙ L-1) with four replicates were tested. Tilapias were fed with 60 mg of 17α-methyltestosterone (MT) ∙ Kg-1 of feed for 28 days, and with hormone-free feed until the common selling body weight of 1g. Water quality variables showed no significant differences between treatments, except for total settleable solids, pH, and final total organic carbon, that had a negative, positive and quadratic linear pattern with the increasing of stocking density, respectively. Growth performance variables such as final body weight, specific growth rate, survival and individual feed intake (and consequently hormone input) were superior at the lower stocking density. Masculinization rate (98.87%) did not differ among treatments, but total variable cost increased to produce 1g fingerlings in higher stocking densities. Hormone residue was not detected in BFT water of any treatment 12 hours after the last feeding so, in conclusion, even being the highest hormone input in the system, 1.5 larvae ∙ L-1 is the best level of stocking density studied for tilapia masculinization in a zero-water exchange BFT.

Keywords

methyltestosterone residues, tilapia sexual inversion, zero water exchange, stocking density, biofloc

References

Abakari G, Luo G, Kombat EO. Dynamics of nitrogenous compounds and their control in biofloc technology (BFT) systems: a review. Aquac Fish. 2021;6(5):441-7. https://doi.org/10.1016/j.aaf.2020.05.005.

Agência Nacional de Vigilância Sanitária – ANVISA. Guia para validação de métodos analíticos e bioanalíticos. Brasília: ANVISA; 2003 [cited 2024 Mar 15]. Available from: http://redsang.ial.sp.gov.br/site/docs_leis/vm/v m1.pdf

Ahmad I, Rani BAM, Verma AK, Maqsood M. Biofloc technology: an emerging avenue in aquatic animal healthcare and nutrition. Aquacult Int. 2017;25(3):1215-26. https://doi.org/10.1007/s10499-016-0108-8.

Alam MN, Amin MR, Das DR, Choudhury BBP, Haque MA. Effect of stocking density on the growth and survival of monosex male tilapia (Oreochromis niloticus) fry (GIFT strain) in hapa. J Agrofor Environ. 2011;5:103-7.

Aliabad HS, Naji A, Mortezaei SRS, Sourinejad I, Akbarzadeh A. Effects of restricted feeding levels and stocking densities on water quality, growth performance, body composition and mucosal innate immunity of Nile tilapia (Oreochromis niloticus) fry in a biofloc system. Aquaculture. 2022;546:737320. https://doi.org/10.1016/j.aquaculture.2021.737320.

Alvarenga ER, Alves GFO, Fernandes AFA, Costa GR, Silva MA, Teixeira EA, Turra EM. Moderate salinities enhance growth performance of Nile tilapia (Oreochromis niloticus) fingerlings in the biofloc system. Aquacult Res. 2018;49(9):2919-26. https://doi.org/10.1111/are.13728.

Alvarenga ER, Sales SCM, Brito ST, Santos CR, Corrêa RDS, Alves GFO, Manduca LG, Turra EM. Effects of biofloc technology on reproduction and ovarian recrudescence in Nile tilapia. Aquacult Res. 2017;48(12):5965-72. https://doi.org/10.1111/are.13420.

American Public Health Association – APHA. Standard methods for the examination of water and wastewater. Washington: APHA; 1998.

Avnimelech Y. Biofloc technology: a practical guide book. Baton Rouge: The World Aquaculture Society; 2009. https://doi.org/10.13140/2.1.4575.0402.

Avnimelech Y. Carbon/nitrogen ratio as a control element in aquaculture systems. Aquaculture. 1999;176(3-4):227-35. https://doi.org/10.1016/S0044-8486(99)00085-X.

Baroiller JF, D’Cotta H. Environment and sex determination in farmed fish. Comp Biochem Physiol C Toxicol Pharmacol. 2001;130(4):399-409. https://doi.org/10.1016/S1532-0456(01)00267-8. PMid:11738628.

Baroiller JF, D’Cotta HD, Bezault E, Wessels S, Hoerstgen-Schwark G. Tilapia sex determination: where temperature and genetics meet. Comp Biochem Physiol A Mol Integr Physiol. 2009;153(1):30-8. https://doi.org/10.1016/j.cbpa.2008.11.018. PMid:19101647.

Baroiller JF, D’Cotta HD. Sex Control in tilápias. In: Wang HP, Chen SL, editors. Sex control in aquaculture. Hoboken: Jonh Wiley Sons Ltd.; 2018. p. 191-234. https://doi.org/10.1002/9781119127291.ch9.

Barry TP, Marwah A, Marwah P. Stability of 17α-methyltestosterone in fish feed. Aquaculture. 2007;271(1-4):523-9. https://doi.org/10.1016/j.aquaculture.2007.05.001.

Bendschneider K, Robinson RJ. A new spectrophotometric method for the determination of nitrite in sea water. J Mar Res. 1952;11:87-96.

Bezerra VM, Reis GPA, Melo CL, Menezes WF, Santos BD, Ferreira MP, Pires DC, Costa FFB, Ramírez JFP, Teixeira JP, Leal CAG, Ribeiro YM, Turra EM, Teixeira EA, Alvarenga ER. A long-term high temperature on young Nile tilápia females affects its urogenital papilla morphology and future reproductive performance. Aquaculture. 2025;595:741666. https://doi.org/10.1016/j.aquaculture.2024.741666.

Boyd CE, Tucker CS. Pond aquaculture: water quality management. New York: Springer Science Business Media; 1998. https://doi.org/10.1007/978-1-4615-5407-3.

Chatvijitkul S, Boyd CE, Davis DA. Nitrogen, phosphorus, and carbon concentrations in some common aquaculture feeds. J World Aquacult Soc. 2017;49(3):477-83. https://doi.org/10.1111/jwas.12443.

Chen Y, Dong S, Wang Z, Wang F, Gao Q, Tian X, Xiong Y. Variations in CO2 fluxes from grass carp Ctenopharyngodon idella aquaculture polyculture ponds. Aquacult Environ Interact. 2015;8:31-40. https://doi.org/10.3354/aei00149.

Contreras‐Sánchez WM, Fitzpatrick MS, Schreck CB. Fate of methyltestosterone in the pond environment: Detection of MT in pond soil from a CRSP site. In: Gupta A, McElwee K, Burke D, Burright J, Cummings X, Egna H, editors. Eighteenth Annual Technical Report. Pond Dynamics/Aquaculture CRSP. Corvallis, Oregon: Oregon State University; 2001. p. 79-82.

Costa e Silva RZ, Alvarenga ER, Matta SV, Alves GFO, Manduca LG, Silva MA, Yoshinaga TT, Fernandes AFA, Turra EM. Masculinization protocol for Nile tilapia (O. niloticus) in Biofloc technology using 17 α-metiltestosterone in the diet. Aquaculture. 2022;547:737470. https://doi.org/10.1016/j.aquaculture.2021.737470.

Costa FFB, Alvarenga ER, Silva MA, Manduca LG, Leite NR, Bezerra VM, Moraes SGS, Goulart LQ, Menezes WF, Cavatti AC No, Campideli TS, Turra EM, Teixeira EA. Soybean oil as diluent and vehicle for 17α-methyltestosterone in the masculinization of Nile tilapia (Oreochromis niloticus) in clear water and biofloc systems. Aquaculture. 2024;591:741120. https://doi.org/10.1016/j.aquaculture.2024.741120.

Chakraborty SB, Banerjee S. Effect of stocking density on monosex Nile tilapia growth during pond culture in India. World Acad Sci Eng Technol. 2010;4(8):646-50. https://doi.org/10.5281/zenodo.1057103.

Crab R, Defoirdt T, Bossier P, Verstraete W. Biofloc technology in aquaculture: beneficial effects and future challenges. Aquaculture. 2012;35:351-6. https://doi.org/10.1016/j.aquaculture.2012.04.046.

Dambo WB, Rana SJ. Effect of stocking density on growth and survival of Oreochromis niloticus (L.) fry in the hatchery. Aquacult Res. 1993;23(1):71-80. https://doi.org/10.1111/j.1365-2109.1993.tb00829.x.

De Alba G, Céspedes L, Campo-Sánchez JC, Esteban MÁ, Sánchez-Vázquez FJ, López-Olmeda JF. Time of day-dependent effects of heat treatment on thermal tolerance and sex differentiation in Nile tilapia (Oreochromis niloticus). Aquaculture. 2024;581:740447. https://doi.org/10.1016/j.aquaculture.2023.740447.

Deng Y, Xu X, Yin X, Lu H, Chen G, Yu J, Ruan Y. Effect of stock density on the microbial community in biofloc water and Pacific white shrimp (Litopenaeus vannamei) gut microbiota. Appl Microbiol Biotechnol. 2019;103(10):4241-52. https://doi.org/10.1007/s00253-019-09773-4. PMid:30953119.

Di Rienzo JA, Casanoves F, Balzarini MG, Gonzalez L, Tablada M, Robledo CW. InfoStat Version 2015 [Internet]. Argentina: Grupo InfoStat, FCA, Universidad Nacional de Córdoba; 2015 [cited 2024 Mar 15]. Available from: http://www.infostat.com.ar.

Ebeling JM, Timmons MB, Bisogni JJ. Engineering analysis of the stoichiometry of photoautotrophic, autotrophic, and heterotrophic removal of ammonia– nitrogen in aquaculture systems. Aquaculture. 2006;257(1-4):346-58. https://doi.org/10.1016/j.aquaculture.2006.03.019.

El-Sayed AFM. Tilapia culture. Wallingford, Oxfordshire: CABI Publishing. 2006. https://doi.org/10.1079/9780851990149.0000.

El-Sayed AFM. Tilapia culture. 2nd ed. London: Elsevier Inc, Academic Press; 2019. 348 p.

El-Sayed AM. Effects of stocking density and feeding levels on growth and feed efficiency of Nile tilapia (Oreochromis niloticus) fry. Aquacult Res. 2002;33(8):621-6. https://doi.org/10.1046/j.1365-2109.2002.00700.x.

Ferdous Z, Masum MA, Ali MM. Influence of stocking density on growth performance and survival of monosex tilapia (Oreochromis niloticus) fry. Int J Res Fish Aquac. 2014;4:99-103.

Garcia F, Romera DM, Gozi KS, Onaka EM, Fonseca FS, Schalch SHC, Candeira PG, Guerra LOM, Carmo FJ, Dalton JC, Carneiro D, Martins MIEG, Portella MC. Stocking density of Nile tilapia in cages placed in a hydroelectric reservoir. Aquaculture. 2013;410:51-6. https://doi.org/10.1016/j.aquaculture.2013.06.010.

García-Ríos L, Miranda-Baeza A, Coelho-Emerenciano MG, Huerta-Rábago JA, Osuna-Amarillas P. Biofloc technology (BFT) applied to tilapia fingerlings production using different carbon sources: emphasis on commercial applications. Aquaculture. 2019;502:26-31. https://doi.org/10.1016/j.aquaculture.2018.11.057.

Guerrero RD 3rd, Shelton WL. An aceto-carmine squash method for sexing juvenile fishes. Prog Fish-Cult. 1974;36(1):56. https://doi.org/10.1577/1548-8659(1974)36[56:AASMFS]2.0.CO;2.

Haridas H, Verma AK, Rathore G, Prakash C, Sawant PB, Babitha Rani AM. Enhanced growth and immuno-physiological response of genetically improved farmed tilapia in indoor biofloc units at different stocking densities. Aquacult Res. 2017;48(8):4346-55. https://doi.org/10.1111/are.13256.

Hengsawat T, Ward FJ, Jaruratjamorn P. The effect of stocking density on yield, growth and mortality of African catifish (Clarias gariepinus Burchell 1822) cultured in cages. Aquaculture. 1997;1997(152):67-76. https://doi.org/10.1016/S0044-8486(97)00008-2.

Homklin S, Ong K, Limpiyakorn T. Biotransformation of 17- methyltestosterone in sediment under different electron acceptor conditions. Chemosphere. 2011;82(10):1402-7. https://doi.org/10.1016/j.chemosphere.2010.11.068. PMid:21194723.

Homklin S, Ong SK, Limpiyakorn T. Degradation of 17α- methyltestosterone by Rhodococcus sp. and Nocardioides sp. Isolated from a masculinizing pond of Nile tilapia fry. J Hazard Mater. 2012;221-222:35-44. https://doi.org/10.1016/j.jhazmat.2012.03.072. PMid:22541334.

Homklin S, Wattanodorn T, Ong SK, Limpiyakorn T. Biodegradation of 17α‐methyltestosterone and isolation of MT-degrading bacterium from sedimento of Nile tilapia masculinization pond. Water Sci Technol. 2009;59(2):261-5. https://doi.org/10.2166/wst.2009.868. PMid:19182335.

International Conference on Harmonisation – ICH. Validation of analytical procedures: text and methodology. United States: ICH; 1994 [cited 2024 Mar 15]. Available from: https://database.ich.org/sites/default/files/Q2%28R1%29%20Guideline.pdf.

Instituto Nacional de Metrologia, Qualidade e Tecnologia – INMETRO. Orientação sobre validação de métodos analíticos [Internet]. 2020 [cited 2024 Mar 15]. Available from: https://app.sogi.com.br/Manager/texto/arquivo/exibir/arquivo?eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9AFFIjAvMTM4ODM3NS9TR19SZXF1aXNpdG9fTGVnYWxfVGV4dG8vMC8wL0RPUS1DZ2NyZS04XzA5LnBkZi8wLzAiAFFBcMYdNmecpDn0m0Dj4vzJmvMJZMAYtW6mtkIlj0C7fk.

Khanjani MH, Sharifinia M. Biofloc technology with addition molasses as carbon sources applied toLitopenaeus vannameijuvenile production under the effects of different C/N ratios. Aquacult Int. 2022;30(1):383-97. https://doi.org/10.1007/s10499-021-00803-5.

Liu G, Ye Z, Liu D, Zhao J, Sivaramasamy E, Deng Y, Zhu S. Influence of stocking density on growth, digestive enzyme activities, immune responses, antioxidant of Oreochromis niloticus fingerlings in biofloc systems. Fish Shellfish Immunol. 2018;81:416-22. https://doi.org/10.1016/j.fsi.2018.07.047. PMid:30056209.

Liu H, Xie S, Zhu X, Lei W, Han D, Yang Y. Effects of dietary ascorbic acid supplementation on the growth performance, immune and stress response in juvenile Leiocassis longirostris Günther exposed to ammonia. Aquacult Res. 2008;39:1628-38. https://doi.org/10.1111/j.1365-2109.2008.02036.x.

Liu S, Chen Y, Li T, Qiao L, Yang Q, Rong W, Liu Q, Wang W, Song J, Wang X, Liu Y. Effects of 17α-methyltestosterone on the transcriptome and sex hormones in the brain of Gobiocypris rarus. Int J Mol Sci. 2023;24(4):3571. https://doi.org/10.3390/ijms24043571. PMid:36834982.

Luz RK, Silva WS, Filho RM, Santos AEH, Rodrigues LA, Takata R, Alvarenga ER, Turra EM. Stocking density in the larviculture of Nile tilapia in saline water. Rev Bras Zootec. 2012;41(12):2385-9. https://doi.org/10.1590/S1516-35982012001200001.

Macintosh DJ, Silva SS. The influence of stocking density and food ration on fry survival and growth in Oreochromis mossambicus and O. niloticus female x O. aureus male hybrids reared in a closed circulated system. Aquaculture. 1984;41(4):345-58. https://doi.org/10.1016/0044-8486(84)90202-3.

Makino LC, Nakaghi LSO, Paes MCF, Malheiros EB, Dias-Koberstein TCR. Effectiveness of methods of sexual identification in Nile tilapia (Oreochromis niloticus) sexually reverted with hormone in diet with different diameters. Biosci J. 2008;25:112-21.

Manduca LG, Silva MA, Alvarenga ER, Alves GFO, Fernandes AFA, Assumpção AF, Cardoso AA, Sales SCM, Teixeira EA, Silva MA, Turra EM. Effects of a zero exchange biofloc system on the growth performance and health of Nile tilapia at different stocking densities. Aquaculture. 2020;521:735064. https://doi.org/10.1016/j.aquaculture.2020.735064.

Manduca LG, Silva MA, Alvarenga ER, Alves GFO, Ferreira NH, Teixeira EA, Fernandes AFA, Silva MA, Turra EM. Effects of different stocking densities on Nile tilapia performance and profitability of a biofloc system with a minimum water Exchange. Aquaculture. 2021;530:735814. https://doi.org/10.1016/j.aquaculture.2020.735814.

Martínez-Porchas M, Martinez-Cordova LR, Ramos-Enriquez R. Cortisol and glucose: reliable indicators of fish stress? Pan-Am J Aquat Sci. 2009;4:158-78.

Mélard C, Baras E, Despez D. Compensatory growth of Nile tilapia Oreochromis niloticus. In: Fitzsimmons K, editor. Tilapia aquaculture. Procceedings of the International Symposium on Tilapia in Aquaculture; 1997; Orlando: Northeast Regional Agricultural Engineering Service, Cooperative Extension; 1997. p. 132-43.

Monsees H, Klatt L, Kloas W, Wuertz S. Chronic exposure to nitrate significantly reduces growth and affects the health status of juvenile Nile tilapia (Oreochromis niloticus L.) in recirculating aquaculture systems. Aquacult Res. 2017;48(7):3482-92. https://doi.org/10.1111/are.13174.

Monteiro MIC, Ferreira FN, Oliveira NMM, Ávila AK. Simplified version of the sodium salicylate method for analysis of nitrate in drinking waters. Anal Chim Acta. 2003;477(1):125-9. https://doi.org/10.1016/S0003-2670(02)01395-8.

Murphy J, Riley JP. A modified single solution methods for the determination of available phosphate in natural water. Anal Chim Acta. 1962;27:31-6. https://doi.org/10.1016/S0003-2670(00)88444-5.

Oliveira EG, Santos FJS, Pereira AM, Lima CB. Circular técnica: produção de tilápia – Mercado, espécie, biologia e recria. Brasília: Ministério da Agricultura, Pecuária e Abastecimento; 2007.

Pai M, Verma AK, Krishnani KK, Varghese T, Hittinahalli CM, Verma MK. Stocking density optimization and its impact on growth and physiological responses of Nile tilapia (Oreochromis niloticus) reared in hybrid biofloc-RAS culture system. Aquaculture. 2024;588:740920. https://doi.org/10.1016/j.aquaculture.2024.740920.

Perez-Fuentes JA, Hernandez-Vergara MP, Perez-Rostro CI, Fogel I. C:N ratios affect nitrogen removal and production of Nile tilapia Oreochromis niloticus raised in a biofloc system under high density cultivation. Aquaculture. 2016;452:247-51. https://doi.org/10.1016/j.aquaculture.2015.11.010.

Phelps RP, Salazar GC, Abe V, Argue BJ. Sex reversal and nursery growth of nile tilapia (L), free-swimming in earth ponds. Aquacult Res. 1995;12:293-5. https://doi.org/10.1111/j.1365-2109.1995.tb00915.x.

Popma TJ, Green BW. Sex reversal of tilapia in earthen ponds. Auburn: International Center for Aquaculture, Alabama Agriculture Experiment Station, Auburn University; 1990. p. 15. Research and Development Series.

R Core Team. R: a language and environment for statistical computing [Internet]. R Foundation for Statistical Computing; 2023 [cited 2024 Mar 15]. Available from: https://www.R-project.org/

Rajeev M, Jung I, Song J, Kang I, Cho JC. Comparative microbiota characterization unveiled a contrasting pattern of floc-associated versus free-living bacterial communities in biofloc aquaculture. Aquaculture. 2023;577:739946. https://doi.org/10.1016/j.aquaculture.2023.739946.

Ramirez JF, Alvarenga ER, Costa FFB, Ferreira MP, Campos AP, Pio NPB, Bezerra VM, Pires DC, Biscoto GL, Keller KM, Bezerra JF No, Pelegrine DR, Salgueiro TM, Tadeu CMO, Turra EM. Reduction of methyltestosterone concentration in feed during masculinization of Nile tilapia (Oreochromis niloticus) in biofloc system. Aquaculture. 2024;593:741253. https://doi.org/10.1016/j.aquaculture.2024.741253.

Ribani M, Bottoli CBG, Collins CH, Jardim ICSF, Melo LFC. Validação em métodos cromatográficos e eletroforéticos. Quim Nova. 2004;27(5):771-80. https://doi.org/10.1590/S0100-40422004000500017.

Sanches LEF, Hayashi C. Densidade de estocagem no desempenha de larvas de tilápia-do-Nilo (Oreochromis niloticus), durante a reversão sexual. Acta Scientiarum. 1999;21:619-25.

Schimittou HR. Produção de peixes em alta densidade em tanques-rede de pequeno volume. Campinas: Mogiana Alimentos e Associação Americana de Soja; 1997. p. 78.

Silva TSC, Ota EC, Inoue LAK. Masculinização ou reversão sexual de tilápias: ajustes nos protocolos. Dourados: Embrapa Agropecuária Oeste; 2023. Comunicado técnico.

Strickland JDH, Parsons TR. A practical handbook of seawater analysis. 2nd ed. Ottawa: Fisheries research Board of Canada; 1972. Bulletin.

Tachibana L, Leonardo AFG, Corrêa CF, Saes LA. Densidade de estocagem de pós-larvas de tilápia-do-Nilo (Oreochromis niloticus) durante a fase de reversão sexual. Bol Inst Pesca. 2009;34:483-8.

Timmons MB, Ebeling JM. Recirculating aquaculture. 2nd ed. Ithaca: Cayuga Aqua Ventures; 2010.

UNESCO. Chemical methods for use in marine environmental monitoring. Paris: UNESCO; 1983. (Intergovernamental Oceanographic Commissiony Manuals and Guides; no. 12).

Vera Cruz EM, Mair GC. Conditions for effective androgen sex reversal in Oreochromis niloticus (L.). Aquaculture. 1994;122(2-3):237-48. https://doi.org/10.1016/0044-8486(94)90513-4.

Wassermann GJ, Afonso LOB. Sex reversal in Nile tilapia (Oreocohromis niloticus Linnaeus) by androgen immersion. Aquacult Res. 2002;34(1):65-71. https://doi.org/10.1046/j.1365-2109.2003.00795.x.

Wedemeyer G. Physiology of fish in intensive culture systems. New York: Springer Science Business Media; 1996. 232 p. https://doi.org/10.1007/978-1-4615-6011-1.

Yanbo W, Wenju Z, Weifen L, Zirong X. Acute toxicity of nitrite on tilapia (Oreochromis niloticus) at different external chloride concentrations. Fish Physiol Biochem. 2006;32(1):49-54. https://doi.org/10.1007/s10695-005-5744-2. PMid:20035478.

Zaki MA, Alabssawy AN, Nour AEAM, El Basuini MF, Dawood MA, Alkahtani S, Abdel-Daim MM. The impact of stocking density and dietary carbon sources on the growth, oxidative status and stress markers of Nile tilapia (Oreochromis niloticus) reared under biofloc conditions. Aquacult Rep. 2020;16:100282. https://doi.org/10.1016/j.aqrep.2020.100282.

Zhang D, Tian X, Dong S, Chen Y, Feng J, He RP, Zhang K. Carbon budgets of two typical polyculture pondsystems in coastal China and their potential rolesin the global carbon cycle. Aquacult Environ Interact. 2020;12:105-15. https://doi.org/10.3354/aei00349.
 


Submitted date:
07/20/2025

Accepted date:
11/27/2025

698dec08a9539506eb5af3a8 animreprod Articles
Links & Downloads

Anim Reprod

Share this page
Page Sections