Animal Reproduction (AR)
https://www.animal-reproduction.org/article/doi/10.1590/1984-3143-AR2025-0075
Animal Reproduction (AR)
ORIGINAL ARTICLE

Ovarian structures modulate cellular aggregation and gene expression in oviductal isthmus cells

Isabelle Cristina Pereira; Ana Carolina Bahia Teixeira; Raphael Rocha Wenceslau; Erika Cristina Jorge; Paola Maria da Silva Rosa; Julia Meireles Nogueira; Jade Carceroni de Sousa Carvalho; Gabriela Ponath Peruzzo; José de Oliveira Carvalho; Leticia Zoccolaro Oliveira

Downloads: 0
Views: 4

Abstract

The presence of follicles and the corpus luteum (CL) in the ovarian surface plays a key role in determining the morphological and molecular fate of the female reproductive tract. However, the specific response of the isthmus epithelium to these ovarian structures remains poorly understood. This study hypothesizes that distinct ovarian structures differentially affect both the cellular aggregate-forming capacity of oviductal isthmus cells and the expression of ESR1, ESR2, and PGR genes. Reproductive tracts were categorized into three groups: ovaries with ≤5 mm follicles (small follicles group; SF); ovaries with follicles between 8-10 mm (large follicles group; LF); and ovaries containing active corpus luteum (CL Group). Isthmus cells from the three groups were cultivated to form cellular aggregates (oviductal explants) during 24 h. Moreover, the expression levels of ESR1, ESR2, and PGR genes were analyzed in the isthmus cells of the experimental groups. The isthmus cells of LF group showed an increased number of cellular aggregates than SF and CL group. Additionally, the SF group presented more aggregates than the CL group. Gene expression analysis revealed that ESR1 expression was higher in the SF group than in the LF group. Moreover, PGR expression was greater in the CL than in the SF group, as well as in the LF than in the SF group. In conclusion, ovarian structures impact the cellular aggregate formation capacity and the gene expression of ovarian steroid receptors in isthmus cells.

Keywords

isthmus cellular aggregates, oviductal explants, gene expression

References

Abe H. Regional variations in the ultrastructural features of secretory cells in the rat oviductal epithelium. Anat Rec. 1994;240(1):77-85. https://doi.org/10.1002/ar.1092400108. PMid:7810917.

Bauersachs S, Ulbrich SE, Gross K, Schmidt SEM, Meyer HHD, Einspanier R, Wenigerkind H, Vermehren M, Blum H, Sinowatz F, Wolf E. Gene expression profiling of bovine endometrium during the oestrous cycle: detection of molecular pathways involved in functional changes. J Mol Endocrinol. 2005;34(3):889-908. https://doi.org/10.1677/jme.1.01799. PMid:15956356.

Berisha B, Pfaffl MW, Schams D. Expression of estrogen and progesterone receptors in the bovine ovary during estrous cycle and pregnancy. Endocrine. 2002;17(3):207-14. https://doi.org/10.1385/ENDO:17:3:207. PMid:12108521.

Binelli M, Gonella-Diaza A, Mesquita F, Membrive C. Sex steroid-mediated control of oviductal function in cattle. Biology (Basel). 2018;7(1):15. https://doi.org/10.3390/biology7010015. PMid:29393864.

Binelli M, Hampton J, Buhi WC, Thatcher WW. Persistent dominant follicle alters pattern of oviductal secretory proteins from cows at Estrus1. Biol Reprod. 1999;61(1):127-34. https://doi.org/10.1095/biolreprod61.1.127. PMid:10377040.

Carvalho JO, Sartori R, Rodello L, Mourão GB, Bicudo SD, Dode MAN. Flow cytometry sex sorting affects bull sperm longevity and compromises their capacity to bind to oviductal cells. Livest Sci. 2018;207:30-7. https://doi.org/10.1016/j.livsci.2017.11.005.

Cerny KL, Ribeiro RAC, Jeoung M, Ko C, Bridges PJ. Estrogen receptor alpha (ESR1)-dependent regulation of the mouse oviductal transcriptome. PLoS One. 2016;11(1):e0147685. https://doi.org/10.1371/journal.pone.0147685. PMid:26808832.

Coy P, García-Vázquez F, Visconti P, Avilés M. Roles of oviduct in mammalian fertilization. Reproduction. 2012;144(6):649-60. https://doi.org/10.1530/REP-12-0279. PMid:23028122.

Donnez J, Casanas-Roux F, Caprasse J, Ferin J, Thomas K. Cyclic changes in ciliation, cell height, and mitotic activity in human tubal epithelium during reproductive life. Fertil Steril. 1985;43(4):554-9. https://doi.org/10.1016/S0015-0282(16)48496-7. PMid:3987924.

Ferraz MAMM, Henning HHW, Stout TAE, Vos PLAM, Gadella BM. Designing 3-dimensional in vitro oviduct culture systems to study mammalian fertilization and embryo production. Ann Biomed Eng. 2017;45(7):1731-44. https://doi.org/10.1007/s10439-016-1760-x. PMid:27844174.

Ferraz MAMM, Rho HS, Hemerich D, Henning HHW, van Tol HTA, Hölker M, Besenfelder U, Mokry M, Vos PLAM, Stout TAE, Le Gac S, Gadella BM. An oviduct-on-a-chip provides an enhanced in vitro environment for zygote genome reprogramming. Nat Commun. 2018;9(1):4934. https://doi.org/10.1038/s41467-018-07119-8. PMid:30467383.

Frasor J, Barnett DH, Danes JM, Hess R, Parlow AF, Katzenellenbogen BS. Response-specific and ligand dose-dependent modulation of estrogen receptor (ER) α activity by ERβ in the uterus. Endocrinology. 2003;144(7):3159-66. https://doi.org/10.1210/en.2002-0143. PMid:12810572.

Gonella-Diaza AM, Mesquita FS, Lopes E, Silva KR, Cogliati B, Strefezzi R, Strefezzi R. Sex steroids drive the remodeling of oviductal extracellular matrix in cattle †. Biol Reprod. 2018;99(3):590-9. https://doi.org/10.1093/biolre/ioy083. PMid:29659700.

Gonella-Diaza AM, Andrade SCS, Sponchiado M, Pugliesi G, Mesquita FS, Van Hoeck V, de Francisco Strefezzi R, Gasparin GR, Coutinho LL, Binelli M. Size of the ovulatory follicle dictates spatial differences in the oviductal transcriptome in cattle. PLoS One. 2015;10(12):e0145321. https://doi.org/10.1371/journal.pone.0145321. PMid:26699362.

Gonella-Diaza AM, Mesquita FS, Silva KR, Carvalho Balieiro JC, Santos NP, Pugliesi G, Francisco Strefezzi R, Binelli M. Sex steroids modulate morphological and functional features of the bovine oviduct. Cell Tissue Res. 2017;370(2):319-33. https://doi.org/10.1007/s00441-017-2666-0. PMid:28770380.

Gualtieri R, Talevi R. Selection of highly fertilization-competent bovine spermatozoa through adhesion to the Fallopian tube epithelium in vitro. Reproduction. 2003;125(2):251-8. https://doi.org/10.1530/rep.0.1250251. PMid:12578539.

Hazano K, Haneda S, Kayano M, Matsui M. Local sex steroid hormone milieu in the bovine oviduct ipsilateral and contralateral to preovulatory follicle or corpus luteum during the periovulatory phase. Domest Anim Endocrinol. 2021;74:106515. https://doi.org/10.1016/j.domaniend.2020.106515. PMid:32711284.

Hazano K, Haneda S, Kayano M, Matsui M. Possible roles of local oviductal estradiol-17β in luteal formation phase on the function of bovine oviductal epithelium. J Vet Med Sci. 2019;81(12):1817-23. https://doi.org/10.1292/jvms.19-0411. PMid:31666443.

Hunter RHF. Components of oviduct physiology in eutherian mammals. Biol Rev Camb Philos Soc. 2012;87(1):244-55. https://doi.org/10.1111/j.1469-185X.2011.00196.x. PMid:21883867.

Ipsa E, Cruzat VF, Kagize JN, Yovich JL, Keane KN. Growth hormone and insulin-like growth factor action in reproductive tissues. Front Endocrinol. 2019;10:777. https://doi.org/10.3389/fendo.2019.00777. PMid:31781044.

Ireland JJ, Coulson PB, Murphree RL. Follicular development during four stages of the estrous cycle of beef cattle. J Anim Sci. 1979;49(5):1261-9. https://doi.org/10.2527/jas1979.4951261x. PMid:575533.

Ireland JJ, Murphee RL, Coulson PB. Accuracy of predicting stages of bovine estrous cycle by gross appearance of the corpus luteum. J Dairy Sci. 1980;63(1):155-60. https://doi.org/10.3168/jds.S0022-0302(80)82901-8. PMid:7372895.

Nascimento BR, de Freitas DS, Nogueira JM, Souza CC, de Paula RS, Pereira JM, Madureira AP, Barcelos LS, Jorge EC, Campos-Junior PHA. Drastic loss of antral follicles due to gene expression dysregulation occurs on the first day after subcutaneous ovarian transplantation. Reprod Sci. 2023;30(8):2524-36. https://doi.org/10.1007/s43032-023-01184-1. PMid:36759496.

Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001;29(9):e45. https://doi.org/10.1093/nar/29.9.e45. PMid:11328886.

Pfaffl MW, Horgan GW, Dempfle L. Relative expression software tool (REST©) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res. 2002;30(9):e36. https://doi.org/10.1093/nar/30.9.e36. PMid:11972351.

Rajagopal M, Tollner TL, Finkbeiner WE, Cherr GN, Widdicombe JH. Differentiated structure and function of primary cultures of monkey oviductal epithelium. In Vitro Cell Dev Biol Anim. 2006;42(8-9):248-54. https://doi.org/10.1290/0602015.1. PMid:17163779.

R Core Team. R: a language and environment for statistical computing. Version 3.6.1 [software]. Vienna: R Foundation for Statistical Computing; 2019.

Rowlinson SW, Yoshizato H, Barclay JL, Brooks AJ, Behncken SN, Kerr LM, Millard K, Palethorpe K, Nielsen K, Clyde-Smith J, Hancock JF, Waters MJ. An agonist-induced conformational change in the growth hormone receptor determines the choice of signalling pathway. Nat Cell Biol. 2008;10(6):740-7. https://doi.org/10.1038/ncb1737. PMid:18488018.

Shao R, Ljungström K, Weijdegård B, Egecioglu E, Fernandez-Rodriguez J, Zhang F-P, Thurin-Kjellberg A, Bergh C, Billig H. Estrogen-induced upregulation of AR expression and enhancement of AR nuclear translocation in mouse fallopian tubes in vivo. Am J Physiol Endocrinol Metab. 2007a;292(2):E604-14. https://doi.org/10.1152/ajpendo.00350.2006. PMid:17047162.

Shao R, Weijdegård B, Fernandez-Rodriguez J, Egecioglu E, Zhu C, Andersson N, Thurin-Kjellberg A, Bergh C, Billig H. Ciliated epithelial-specific and regional-specific expression and regulation of the estrogen receptor-β2 in the fallopian tubes of immature rats: a possible mechanism for estrogen-mediated transport process in vivo. Am J Physiol Endocrinol Metab. 2007b;293(1):E147-58. https://doi.org/10.1152/ajpendo.00101.2007. PMid:17374697.

Slayden OD, Luo F, Bishop CV. Physiological action of progesterone in the nonhuman primate oviduct. Cells. 2022;11(9):1534. https://doi.org/10.3390/cells11091534. PMid:35563839.

Smith JF, Fairclough RJ, Payne E, Peterson AJ. Plasma hormone levels in the cow. N Z J Agric Res. 1975;18(2):123-9. https://doi.org/10.1080/00288233.1975.10421012.

Takahashi H, Haneda S, Kayano M, Matsui M. Differences in progesterone concentrations and mRNA expressions of progesterone receptors in bovine endometrial tissue between the uterine horns ipsilateral and contralateral to the corpus luteum. J Vet Med Sci. 2016;78(4):613-8. https://doi.org/10.1292/jvms.15-0366. PMid:26782011.

Tibbetts TA, Mendoza-Meneses M, O’Malley BW, Conneely OM. Mutual and intercompartmental regulation of estrogen receptor and progesterone receptor expression in the mouse uterus. Biol Reprod. 1998;59(5):1143-52. https://doi.org/10.1095/biolreprod59.5.1143. PMid:9780321.

Ulbrich SE, Kettler A, Einspanier R. Expression and localization of estrogen receptor α, estrogen receptor β and progesterone receptor in the bovine oviduct in vivo and in vitro. J Steroid Biochem Mol Biol. 2003;84(2-3):279-89. https://doi.org/10.1016/S0960-0760(03)00039-6. PMid:12711014.

Ulbrich SE, Zitta K, Hiendleder S, Wolf E. In vitro systems for intercepting early embryo-maternal cross-talk in the bovine oviduct. Theriogenology. 2010;73(6):802-16. https://doi.org/10.1016/j.theriogenology.2009.09.036. PMid:19963260.
 


Submitted date:
05/29/2025

Accepted date:
10/31/2025

6972399ca95395407f004067 animreprod Articles
Links & Downloads

Anim Reprod

Share this page
Page Sections