Animal Reproduction (AR)
https://www.animal-reproduction.org/article/doi/10.1590/1984-3143-AR2025-0071
Animal Reproduction (AR)
Thematic Section: 38th Annual Meeting of the Brazilian Embryo Technology Society (SBTE)

The dominant follicle: the final frontier in bovine oocyte development

Lais Barbosa Latorraca; Antonio Galvão; Julietta Maria D’Augero; Gavin Kelsey; Noof Abdulrahman Alrabiah; Trudee Fair

Downloads: 0
Views: 333

Abstract

The acquisition of oocyte competence in cattle, encompassing both cytoplasmic and nuclear maturation, is essential for successful fertilization and embryonic development. This competence is progressively achieved during the latter stages of the oocyte growth phase and completed within the dominant follicle (DF). The unique hormonal and immunological environment of the DF during oestrous supports oocyte “capacitation,” a process involving organelle reorganization, mRNA storage and meiosis resumption, which fully prepares the oocyte for fertilization. These changes differentiate oocytes from the DF from those of subordinate follicles, explaining why only oocytes from the DF mature and ovulate successfully. Despite advances in assisted reproductive technologies like in vitro maturation (IVM) and in vitro fertilization (IVF), developmental outcomes remain inferior compared to in vivo matured oocytes, largely due to incomplete or altered oocyte maturation in vitro. Blastocyst rates after IVM/IVF are substantially lower (~35%) than those from in vivo matured oocytes (58-78%). The heterogeneity of oocytes retrieved from antral follicles and the lack of exposure to the natural follicular environment during IVM are key factors limiting developmental competence. Here we describe the molecular changes in bovine oocytes from DFs, collected at 24 and 2 h before ovulation without ovarian stimulation, using single-cell RNA sequencing and bisulfite sequencing to assess gene expression and DNA methylation dynamics. Results revealed significant shifts in transcripts related to oxidative phosphorylation, highlighting the crucial role of energy metabolism during oocyte capacitation. DNA methylation changes were subtle but indicated a more dynamic and less stable epigenome in fully-grown oocytes than previously assumed. Overall, understanding the gene expression and epigenetic landscape during oocyte maturation in the DF offers valuable insights into improving oocyte quality and ART outcomes in cattle. Optimizing the maturation environment to better mimic natural follicular conditions could enhance reproductive efficiency in bovine production systems.

Supplementary Material
This material is available as part of the online article from: https://doi.org/10.1590/1984-3143-AR2025-0071

Keywords

dominant follicle, oocyte competence, RNA sequencing, DNA methylation

References

Aardema H, Roelen BA, van Tol HT, Oei CH, Gadella BM, Vos PL. Follicular 17β-estradiol and progesterone concentrations and degree of cumulus cell expansion as predictors of in vivo-matured oocyte developmental competence in superstimulated heifers. Theriogenology. 2013;80(6):576-83. http://doi.org/10.1016/j.theriogenology.2013.05.025. PMid:23831113.

Abdulrahman Alrabiah N, Evans ACO, Fahey AG, Cantwell N, Lonergan P, McCormack J, Browne JA, Fair T. Immunological aspects of ovarian follicle ovulation and corpus luteum formation in cattle. Reproduction. 2021;162(3):209-25. http://doi.org/10.1530/REP-21-0165. PMid:34255737.

Abdulrahman Alrabiah N, Simintiras CA, Evans ACO, Lonergan P, Fair T. Biochemical alterations in the follicular fluid of bovine peri-ovulatory follicles and their association with final oocyte maturation. Reprod Fertil. 2023;4(1). http://doi.org/10.1530/RAF-22-0090. PMid:36547396.

Adams GP, Jaiswal R, Singh J, Malhi P. Progress in understanding ovarian follicular dynamics in cattle. Theriogenology. 2008;69(1):72-80. http://doi.org/10.1016/j.theriogenology.2007.09.026. PMid:17980420.

Alemu TW, Schuermann Y, Madogwe E, St Yves A, Dicks N, Bohrer R, Higginson V, Mondadori RG, de Macedo MP, Taibi M, Baurhoo B, Bordignon V, Duggavathi R. Severe body condition loss lowers hepatic output of IGF1 with adverse effects on the dominant follicle in dairy cows. Animal. 2024;18(2):101063. http://doi.org/10.1016/j.animal.2023.101063. PMid:38237478.

Algire JE, Srikandakumar A, Guilbault LA, Downey BR. Preovulatory changes in follicular prostaglandins and their role in ovulation in cattle. Can J Vet Res. 1992;56(1):67-9. PMid:1586897.

Assey RJ, Hyttel P, Greve T, Purwantara B. Oocyte morphology in dominant and subordinate follicles. Mol Reprod Dev. 1994;37(3):335-44. http://doi.org/10.1002/mrd.1080370313. PMid:8185939.

Barnes FL, Sirard MA. Oocyte maturation. Semin Reprod Med. 2000;18(2):123-32. http://doi.org/10.1055/s-2000-12551. PMid:11256162.

Bender K, Walsh S, Evans ACO, Fair T, Brennan L. Metabolite concentrations in follicular fluid may explain differences in fertility between heifers and lactating cows. Reproduction. 2010;139(6):1047-55. http://doi.org/10.1530/REP-10-0068. PMid:20385782.

Benedetti C, Giaccari C, Cecere F, Gansemans Y, Kelsey G, Galvão A, Andrews S, Azari Dolatabad N, Fernández Montoro A, Bogado Pascottini O, De Coster T, van Nieuwerburgh F, Fair T, Mullaart E, Pavani KC, van Soom A, Smits K. Single-cell multiomic analysis reveals methylome and transcriptome deviations following oocyte maturation in vitro. Reproduction. 2025;170(2):REP-25-0011. http://doi.org/10.1530/REP-25-0011. PMid:40569608.

Blondin P, Coenen K, Guilbault LA, Sirard MA. In vitro production of bovine embryos: developmental competence is acquired before maturation. Theriogenology. 1997;47(5):1061-75. http://doi.org/10.1016/S0093-691X(97)00063-0. PMid:16728056.

Bridges PJ, Komar CM, Fortune JE. Gonadotropin-induced expression of messenger ribonucleic acid for cyclooxygenase-2 and Production of prostaglandins E and F2α in bovine preovulatory follicles are regulated by the progesterone receptor. Endocrinology. 2006;147(10):4713-22. http://doi.org/10.1210/en.2005-1575. PMid:16825323.

Canty MJ, Boland MP, Evans AC, Crowe MA. Alterations in follicular IGFBP mRNA expression and follicular fluid IGFBP concentrations during the first follicle wave in beef heifers. Anim Reprod Sci. 2006;93(3-4):199-217. http://doi.org/10.1016/j.anireprosci.2005.06.033. PMid:16159699.

Channing CP, Schaerf FW, Anderson LD, Tsafriri A. Ovarian follicular and luteal physiology. Int Rev Physiol. 1980;22:117-201. PMid:6248477.

Chen HT, Wu WB, Lin JJ, Lai TH. Identification of potential angiogenic biomarkers in human follicular fluid for predicting oocyte maturity. Front Endocrinol. 2023;14:1173079. http://doi.org/10.3389/fendo.2023.1173079. PMid:37635970.

Chowdhury MWH, Scaramuzzi RJ, Wheeler-Jones CPD, Khalid M. The expression of angiogenic growth factors and their receptors in ovarian follicles throughout the estrous cycle in the ewe. Theriogenology. 2010;73(7):856-72. http://doi.org/10.1016/j.theriogenology.2009.10.011. PMid:20042232.

Cohen-Fredarow A, Tadmor A, Raz T, Meterani N, Addadi Y, Nevo N, Solomonov I, Sagi I, Mor G, Neeman M, Dekel N. Ovarian dendritic cells act as a double-edged pro-ovulatory and anti-inflammatory sword. Mol Endocrinol. 2014;28(7):1039-54. http://doi.org/10.1210/me.2013-1400. PMid:24825398.

Da Broi MG, Giorgi VSI, Wang F, Keefe DL, Albertini D, Navarro PA. Influence of follicular fluid and cumulus cells on oocyte quality: clinical implications. J Assist Reprod Genet. 2018;35(5):735-51. http://doi.org/10.1007/s10815-018-1143-3. PMid:29497954.

Damdimopoulou P, Chiang C, Flaws JA. Retinoic acid signaling in ovarian folliculogenesis and steroidogenesis. Reprod Toxicol. 2019;87:32-41. http://doi.org/10.1016/j.reprotox.2019.04.007. PMid:31059772.

Demond H, Kelsey G. (2020). The enigma of DNA methylation in the mammalian oocyte. F1000Res, 9. http://doi.org/10.12688/f1000research.21513.1

Denicol AC, Lopes G Jr, Mendonça LG, Rivera FA, Guagnini F, Perez RV, Lima JR, Bruno RG, Santos JE, Chebel RC. Low progesterone concentration during the development of the first follicular wave reduces pregnancy per insemination of lactating dairy cows. J Dairy Sci. 2012;95(4):1794-806. http://doi.org/10.3168/jds.2011-4650. PMid:22459828.

Dieleman SJ, Kruip TA, Fontijne P, de Jong WH, van der Weyden GC. Changes in oestradiol, progesterone and testosterone concentrations in follicular fluid and in the micromorphology of preovulatory bovine follicles relative to the peak of luteinizing hormone. J Endocrinol. 1983;97(1):31-42, NP. http://doi.org/10.1677/joe.0.0970031. PMid:6682433.

Downs SM, Coleman DL, Eppig JJ. Maintenance of murine oocyte meiotic arrest: uptake and metabolism of hypoxanthine and adenosine by cumulus cell-enclosed and denuded oocytes. Dev Biol. 1986;117(1):174-83. http://doi.org/10.1016/0012-1606(86)90359-3. PMid:2875006.

Duan JE, Jiang ZC, Alqahtani F, Mandoiu I, Dong H, Zheng X, Marjani SL, Chen J, Tian XC. Methylome dynamics of bovine gametes and in vivo early embryos. Front Genet. 2019;10:512. http://doi.org/10.3389/fgene.2019.00512. PMid:31191619.

Duffy DM, Ko C, Jo M, Brannstrom M, Curry TE Jr. Ovulation: parallels with inflammatory processes. Endocr Rev. 2019;40(2):369-416. http://doi.org/10.1210/er.2018-00075. PMid:30496379.

Dumesic DA, Meldrum DR, Katz-Jaffe MG, Krisher RL, Schoolcraft WB. Oocyte environment: follicular fluid and cumulus cells are critical for oocyte health. Fertil Steril. 2015;103(2):303-16. http://doi.org/10.1016/j.fertnstert.2014.11.015. PMid:25497448.

Eppig JJ, Ward-Bailey PF, Coleman DL. Hypoxanthine and adenosine in murine ovarian follicular fluid: concentrations and activity in maintaining oocyte meiotic arrest. Biol Reprod. 1985;33(5):1041-9. http://doi.org/10.1095/biolreprod33.5.1041. PMid:4074802.

Espey LL. Ovulation as an inflammatory reaction: a hypothesis. Biol Reprod. 1980;22(1):73-106. http://doi.org/10.1095/biolreprod22.1.73. PMid:6991013.

Fair T. Mammalian oocyte development: checkpoints for competence. Reprod Fertil Dev. 2010;22(1):13-20. http://doi.org/10.1071/RD09216. PMid:20003841.

Fair T. The contribution of the maternal immune system to the establishment of pregnancy in cattle. Front Immunol. 2015;6:7. http://doi.org/10.3389/fimmu.2015.00007. PMid:25674085.

Fair T, Lonergan P. The role of progesterone in oocyte acquisition of developmental competence. Reprod Domest Anim. 2012;47(Suppl 4):142-7. http://doi.org/10.1111/j.1439-0531.2012.02068.x. PMid:22827363.

Fair T, Lonergan P. The oocyte: the key player in the success of assisted reproduction technologies. Reprod Fertil Dev. 2023;36(2):133-48. http://doi.org/10.1071/RD23164. PMid:38064189.

Fair T, Hulshof SC, Hyttel P, Greve T, Boland M. Nucleus ultrastructure and transcriptional activity of bovine oocytes in preantral and early antral follicles. Mol Reprod Dev. 1997;46(2):208-15. http://doi.org/10.1002/(SICI)1098-2795(199702)46:2<208::AID-MRD11>3.0.CO;2-X. PMid:9021752.

Fair T, Hyttel P, Greve T, Boland M. Nucleus structure and transcriptional activity in relation to oocyte diameter in cattle. Mol Reprod Dev. 1996;43(4):503-12. http://doi.org/10.1002/(SICI)1098-2795(199604)43:4<503::AID-MRD13>3.0.CO;2-#. PMid:9052942.

Ferrara N, Davis-Smyth T. The biology of vascular endothelial growth factor. Endocr Rev. 1997;18(1):4-25. http://doi.org/10.1210/edrv.18.1.0287. PMid:9034784.

Forde N, O’Gorman A, Whelan H, Duffy P, O’Hara L, Kelly AK, Havlicek V, Besenfelder U, Brennan L, Lonergan P. Lactation-induced changes in metabolic status and follicular-fluid metabolomic profile in postpartum dairy cows. Reprod Fertil Dev. 2016;28(12):1882-92. http://doi.org/10.1071/RD14348. PMid:26072962.

Fortune JE, Hansel W. Concentrations of steroids and gonadotropins in follicular fluid from normal heifers and heifers primed for superovulation. Biol Reprod. 1985;32(5):1069-79. http://doi.org/10.1095/biolreprod32.5.1069. PMid:3926013.

Fortune JE, Quirk SM. Regulation of steroidogenesis in bovine preovulatory follicles. J Anim Sci. 1988;66(Suppl 2):1-8.

Fortune JE, Rivera GM, Yang MY. Follicular development: the role of the follicular microenvironment in selection of the dominant follicle. Anim Reprod Sci. 2004;82-83:109-26. http://doi.org/10.1016/j.anireprosci.2004.04.031. PMid:15271447.

Fortune JE, Rivera GM, Evans ACO, Turzillo AM. Differentiation of dominant versus subordinate follicles in cattle. Biol Reprod. 2001;65(3):648-54. http://doi.org/10.1095/biolreprod65.3.648. PMid:11514324.

Gad A, Abu Hamed S, Khalifa M, Amin A, El-Sayed A, Swiefy SA, El-Assal S. Retinoic acid improves maturation rate and upregulates the expression of antioxidant-related genes in in vitro matured buffalo (Bubalus bubalis) oocytes. Int J Vet Sci Med. 2018;6(2):279-85. http://doi.org/10.1016/j.ijvsm.2018.09.003. PMid:30564610.

Gargett C, Rogers P. Human endometrial angiogenesis. Reproduction. 2001;121(2):181-6. http://doi.org/10.1530/rep.0.1210181. PMid:11226042.

Gomez-Leon VE, Ginther OJ, Domingues RR, Sanglard LP, Wiltbank MC. Temporality of ovarian steroids and LH/FSH pulse profiles encompassing selection of the dominant follicle in heifersdagger. Biol Reprod. 2023;108(2):269-78. http://doi.org/10.1093/biolre/ioac201. PMid:36401876.

Gomez-León VE, Ginther OJ, Guimarães JD, Wiltbank MC. Hormonal mechanisms regulating follicular wave dynamics II: progesterone decreases diameter at follicle selection regardless of whether circulating FSH or LH are decreased or elevated. Theriogenology. 2020;143:148-56. http://doi.org/10.1016/j.theriogenology.2019.11.003. PMid:31964484.

Gosden RG, Hunter RHF, Telfer E, Torrance C, Brown N. Physiological factors underlying the formation of ovarian follicular fluid. J Reprod Fertil. 1988;82(2):813-25. http://doi.org/10.1530/jrf.0.0820813. PMid:3283348.

Guimerà M, Morales-Ruiz M, Jiménez W, Balasch J. LH/HCG stimulation of VEGF and adrenomedullin production by follicular fluid macrophages and luteinized granulosa cells. Reprod Biomed Online. 2009;18(6):743-9. http://doi.org/10.1016/S1472-6483(10)60021-1. PMid:19490776.

Hansel W, Echternkamp S. Control of ovarian function in domestic animals. Am Zool. 1972;12(2):225-43. http://doi.org/10.1093/icb/12.2.225.

Harasimov K, Uraji J, Mönnich EU, Holubcová Z, Elder K, Blayney M, Schuh M. Actin-driven chromosome clustering facilitates fast and complete chromosome capture in mammalian oocytes. Nat Cell Biol. 2023;25(3):439-52. http://doi.org/10.1038/s41556-022-01082-9. PMid:36732633.

Hatzirodos N, Hummitzsch K, Irving-Rodgers HF, Harland ML, Morris SE, Rodgers RJ. Transcriptome profiling of granulosa cells from bovine ovarian follicles during atresia. BMC Genomics. 2014;15(1):40. http://doi.org/10.1186/1471-2164-15-40. PMid:24438529.

Hoelker M, Kassens A, Salilew-Wondim D, Sieme H, Wrenzycki C, Tesfaye D, Neuhoff C, Schellander K, Held-Hoelker E. Birth of healthy calves after intra-follicular transfer (IFOT) of slaughterhouse derived immature bovine oocytes. Theriogenology. 2017;97:41-9. http://doi.org/10.1016/j.theriogenology.2017.04.009. PMid:28583607.

Huang J, Ju Z, Li Q, Hou Q, Wang C, Li J, Li R, Wang L, Sun T, Hang S, Gao Y, Hou M, Zhong J. Solexa sequencing of novel and differentially expressed micrornas in testicular and ovarian tissues in holstein cattle. Int J Biol Sci. 2011;7(7):1016-26. http://doi.org/10.7150/ijbs.7.1016. PMid:21912509.

Hunter AG, Moor RM. Stage-dependent effects of inhibiting ribonucleic acids and protein synthesis on meiotic maturation of bovine oocytes in vitro. J Dairy Sci. 1987;70(8):1646-51. http://doi.org/10.3168/jds.S0022-0302(87)80192-3. PMid:2444633.

Hyttel P, Fair T, Callesen H, Greve T. Oocyte growth, capacitation and final maturation in cattle. Theriogenology. 1997;47(1):23-32. http://doi.org/10.1016/S0093-691X(96)00336-6.

Ikeda S, Kitagawa M, Imai H, Yamada M. The roles of vitamin A for cytoplasmic maturation of bovine oocytes. J Reprod Dev. 2005;51(1):23-35. http://doi.org/10.1262/jrd.51.23. PMid:15750294.

Ireland J, Roche J. Development of antral follicles in cattle after prostaglandin-induced luteolysis: changes in serum hormones, steroids in follicular fluid, and gonadotropin receptors. Endocrinology. 1982;111(6):2077-86. http://doi.org/10.1210/endo-111-6-2077. PMid:6291909.

Ireland J, Roche J. Growth and differentiation of large antral follicles after spontaneous luteolysis in heifers: changes in concentration of hormones in follicular fluid and specific binding of gonadotropins to follicles. J Anim Sci. 1983;57(1):157-67. http://doi.org/10.2527/jas1983.571157x. PMid:6309727.

Ireland J, Mihm M, Austin E, Diskin M, Roche J. Historical perspective of turnover of dominant follicles during the bovine estrous cycle: key concepts, studies, advancements, and terms. J Dairy Sci. 2000;83(7):1648-58. http://doi.org/10.3168/jds.S0022-0302(00)75033-8. PMid:10908068.

Ivanova E, Canovas S, Garcia-Martínez S, Romar R, Lopes JS, Rizos D, Sanchez-Calabuig MJ, Krueger F, Andrews S, Perez-Sanz F, Kelsey G, Coy P. DNA methylation changes during preimplantation development reveal inter-species differences and reprogramming events at imprinted genes. Clin Epigenetics. 2020;12(1):64. http://doi.org/10.1186/s13148-020-00857-x. PMid:32393379.

Jiang Z, Lin J, Dong H, Zheng X, Marjani SL, Duan J, Ouyang Z, Chen J, Tian XC. DNA methylomes of bovine gametes and in vivo produced preimplantation embryos. Biol Reprod. 2018;99(5):949-59. http://doi.org/10.1093/biolre/ioy138.

Jiang Y, He Y, Pan X, Wang P, Yuan X, Ma B. Advances in oocyte maturation in vivo and in vitro in mammals. Int J Mol Sci. 2023;24(10):9059. http://doi.org/10.3390/ijms24109059. PMid:37240406.

Johnston B, Burns AR, Suematsu M, Issekutz TB, Woodman RC, Kubes P. Chronic inflammation upregulates chemokine receptors and induces neutrophil migration to monocyte chemoattractant protein-1. J Clin Invest. 1999;103(9):1269-76. http://doi.org/10.1172/JCI5208. PMid:10225970.

Kadam AL, Koide SS. Identification of hypoxanthine in bovine follicular fluid. J Pharm Sci. 1990;79(12):1077-82. http://doi.org/10.1002/jps.2600791208.

Kastrop PMM, Hulshof SCJ, Bevers MM, Destrée OHJ, Kruip TAM. The effects of α-amanitin and cycloheximide on nuclear progression, protein synthesis, and phosphorylation during bovine oocyte maturation in vitro. Mol Reprod Dev. 1991;28(3):249-54. http://doi.org/10.1002/mrd.1080280306. PMid:2015083.

Kopecný V, Fléchon JE, Camous S, Fulka J Jr. Nucleologenesis and the onset of transcription in the eight-cell bovine embryo: fine-structural autoradiographic study. Mol Reprod Dev. 1989;1(2):79-90. http://doi.org/10.1002/mrd.1080010202. PMid:2629852.

Kruip TA, Dieleman SJ. Macroscopic classification of bovine follicles and its validation by micromorphological and steroid biochemical procedures. Reprod Nutr Dev. 1982;22(3):465-73. http://doi.org/10.1051/rnd:19820403.

Labrecque R, Lodde V, Dieci C, Tessaro I, Luciano AM, Sirard MA. Chromatin remodelling and histone m RNA accumulation in bovine germinal vesicle oocytes. Mol Reprod Dev. 2015;82(6):450-62. http://doi.org/10.1002/mrd.22494. PMid:25940597.

Latorraca LB, Galvão A, Rabaglino MB, D’Augero JM, Kelsey G, Fair T. Single-cell profiling reveals transcriptome dynamics during bovine oocyte growth. BMC Genomics. 2024;25(1):335. http://doi.org/10.1186/s12864-024-10234-0. PMid:38580918.

Lavy G, Behrman HR, Polan ML. Purine levels and metabolism in human follicular fluid*. Hum Reprod. 1990;5(5):529-32. http://doi.org/10.1093/oxfordjournals.humrep.a137136. PMid:2168435.

Leroy JLMR, Rizos D, Sturmey R, Bossaert P, Gutierrez-Adan A, van Hoeck V, Valckx S, Bols PEJ. Intrafollicular conditions as a major link between maternal metabolism and oocyte quality: a focus on dairy cow fertility. Reprod Fertil Dev. 2011;24(1):1-12. http://doi.org/10.1071/RD11901. PMid:22394712.

Li R, Albertini DF. The road to maturation: somatic cell interaction and self-organization of the mammalian oocyte. Nat Rev Mol Cell Biol. 2013;14(3):141-52. http://doi.org/10.1038/nrm3531. PMid:23429793.

Lima PF, Oliveira MAL, Santos MHB, Reichenbach HD, Weppert M, Paula-Lopes FF, Cavalcanti CC No, Gonçalves PBD. Effect of retinoids and growth factor on in vitro bovine embryos produced under chemically defined conditions. Anim Reprod Sci. 2006;95(3-4):184-92. http://doi.org/10.1016/j.anireprosci.2005.08.013. PMid:16289874.

Liu Z, Sun Y, Jiang Y, Qian Y, Chen S, Gao S, Chen L, Li C, Zhou X. Follicle-stimulating hormone (FSH) promotes retinol uptake and metabolism in the mouse ovary. Reprod Biol Endocrinol. 2018;16(1):52. http://doi.org/10.1186/s12958-018-0371-9. PMid:29803227.

Livingston T, Eberhardt D, Edwards JL, Godkin J. Retinol improves bovine embryonic development in vitro. Reprod Biol Endocrinol. 2004;2(1):83. http://doi.org/10.1186/1477-7827-2-83. PMid:15613237.

Lonergan P, Fair T. In vitro-produced bovine embryos: dealing with the warts. Theriogenology. 2008;69(1):17-22. http://doi.org/10.1016/j.theriogenology.2007.09.007. PMid:17950823.

Lonergan P, Fair T. Maturation of oocytes in vitro. Annu Rev Anim Biosci. 2016;4(1):255-68. http://doi.org/10.1146/annurev-animal-022114-110822. PMid:26566159.

Lonergan P, Monaghan P, Rizos D, Boland MP, Gordon I. Effect of follicle size on bovine oocyte quality and developmental competence following maturation, fertilization, and culture in vitro. Mol Reprod Dev. 1994;37(1):48-53. http://doi.org/10.1002/mrd.1080370107. PMid:8129930.

Luciano AM, Sirard M-A. Successful in vitro maturation of oocytes: a matter of follicular differentiation. Biol Reprod. 2018;98(2):162-9. http://doi.org/10.1093/biolre/iox149. PMid:29165545.

Ma S, Lan G, Miao Y, Wang Z, Chang Z, Luo M, Tan J. Hypoxanthine (HX) inhibition of in vitro meiotic resumption in goat oocytes. Mol Reprod Dev. 2003;66(3):306-13. http://doi.org/10.1002/mrd.10355. PMid:14502610.

Macaulay AD, Gilbert I, Scantland S, Fournier E, Ashkar F, Bastien A, Saadi HAS, Gagné D, Sirard M-A, Khandjian ÉW, Richard FJ, Hyttel P, Robert C. Cumulus cell transcripts transit to the bovine oocyte in preparation for maturation. Biol Reprod. 2016;94(1):16. http://doi.org/10.1095/biolreprod.114.127571. PMid:26586844.

Mamo S, Carter F, Lonergan P, Leal CL, Al Naib A, McGettigan P, Mehta JP, Evans AC, Fair T. Sequential analysis of global gene expression profiles in immature and in vitro matured bovine oocytes: potential molecular markers of oocyte maturation. BMC Genomics. 2011;12(1):151. http://doi.org/10.1186/1471-2164-12-151. PMid:21410957.

Marei WF, Ghafari F, Fouladi-Nashta AA. Role of hyaluronic acid in maturation and further early embryo development of bovine oocytes. Theriogenology. 2012;78(3):670-7. http://doi.org/10.1016/j.theriogenology.2012.03.013. PMid:22541325.

Matoba S, Bender K, Fahey AG, Mamo S, Brennan L, Lonergan P, Fair T. Predictive value of bovine follicular components as markers of oocyte developmental potential. Reprod Fertil Dev. 2014;26(2):337-45. http://doi.org/10.1071/RD13007. PMid:23514964.

McLaren J, Prentice A, Charnock-Jones DS, Millican SA, Müller KH, Sharkey AM, Smith SK. Vascular endothelial growth factor is produced by peritoneal fluid macrophages in endometriosis and is regulated by ovarian steroids. J Clin Invest. 1996;98(2):482-9. http://doi.org/10.1172/JCI118815. PMid:8755660.

Michalak A, Mosińska P, Fichna J. Polyunsaturated fatty acids and their derivatives: therapeutic value for inflammatory, functional gastrointestinal disorders, and colorectal cancer. Front Pharmacol. 2016;7:459. http://doi.org/10.3389/fphar.2016.00459. PMid:27990120.

Mihm M, Austin EJ, Good TE, Ireland JL, Knight PG, Roche JF, Ireland JJ. Identification of potential intrafollicular factors involved in selection of dominant follicles in heifers. Biol Reprod. 2000;63(3):811-9. http://doi.org/10.1095/biolreprod63.3.811. PMid:10952925.

Mihm M, Good T, Ireland J, Ireland J, Knight P, Roche J. Decline in serum follicle-stimulating hormone concentrations alters key intrafollicular growth factors involved in selection of the dominant follicle in heifers. Biol Reprod. 1997;57(6):1328-37. http://doi.org/10.1095/biolreprod57.6.1328. PMid:9408237.

Miyano T, Ebihara M, Goto Y, Hirao Y, Nagai T, Kato S. Inhibitory action of hypoxanthine on meiotic resumption of denuded pig follicular oocytes in vitro. J Exp Zool. 1995;273(1):70-5. vailable from: https://doi.org/https://doi.org/10.1002/jez.1402730109. http://doi.org/10.1002/jez.1402730109. PMid:7561726.

Nasser LF, Sá MF Fo, Reis EL, Rezende CR, Mapletoft RJ, Bó GA, Baruselli PS. Exogenous progesterone enhances ova and embryo quality following superstimulation of the first follicular wave in Nelore (Bos indicus) donors. Theriogenology. 2011;76(2):320-7. http://doi.org/10.1016/j.theriogenology.2011.02.009. PMid:21496903.

Oakley OR, Kim H, El-Amouri I, Lin PC, Cho J, Bani-Ahmad M, Ko C. Periovulatory leukocyte infiltration in the rat ovary. Endocrinology. 2010;151(9):4551-9. http://doi.org/10.1210/en.2009-1444. PMid:20591976.

Oliveira LM, Teixeira FME, Sato MN. Impact of Retinoic Acid on Immune Cells and Inflammatory Diseases. Mediators Inflamm. 2018;2018(1):3067126. http://doi.org/10.1155/2018/3067126. PMid:30158832.

Palmer MV, Thacker TC, Waters WR. Histology, immunohistochemistry and ultrastructure of the bovine palatine tonsil with special emphasis on reticular epithelium. Vet Immunol Immunopathol. 2009;127(3-4):277-85. http://doi.org/10.1016/j.vetimm.2008.10.336. PMid:19084280.

Reisinger K, Baal N, McKinnon T, Münstedt K, Zygmunt M. The gonadotropins: tissue-specific angiogenic factors? Mol Cell Endocrinol. 2007;269(1-2):65-80. http://doi.org/10.1016/j.mce.2006.11.015. PMid:17349737.

Reyes JM, Chitwood JL, Ross PJ. RNA-Seq profiling of single bovine oocyte transcript abundance and its modulation by cytoplasmic polyadenylation. Mol Reprod Dev. 2015;82(2):103-14. http://doi.org/10.1002/mrd.22445. PMid:25560149.

Richani D, Gilchrist RB. The epidermal growth factor network: role in oocyte growth, maturation and developmental competence. Hum Reprod Update. 2018;24(1):1-14. http://doi.org/10.1093/humupd/dmx029. PMid:29029246.

Rivera FA, Mendonça LG, Lopes G Jr, Santos JE, Perez RV, Amstalden M, Correa-Calderón A, Chebel RC. Reduced progesterone concentration during growth of the first follicular wave affects embryo quality but has no effect on embryo survival post transfer in lactating dairy cows. Reproduction. 2011;141(3):333-42. http://doi.org/10.1530/REP-10-0375. PMid:21177956.

Rizos D, Ward F, Duffy P, Boland MP, Lonergan P. Consequences of bovine oocyte maturation, fertilization or early embryo development in vitro versus in vivo: implications for blastocyst yield and blastocyst quality. Mol Reprod Dev. 2002;61(2):234-48. http://doi.org/10.1002/mrd.1153. PMid:11803560.

Sánchez JM, Rabaglino MB, Bagés-Arnal S, McDonald M, Behura SK, Spencer TE, Lonergan P, Fernandez-Fuertes B. Sperm exposure to accessory gland secretions alters the transcriptomic response of the endometrium in cattle. Theriogenology. 2024;218:26-34. http://doi.org/10.1016/j.theriogenology.2024.01.037. PMid:38295677.

Sanz M-J, Kubes P. Neutrophil-active chemokines in in vivo imaging of neutrophil trafficking. Eur J Immunol. 2012;42(2):278-83. http://doi.org/10.1002/eji.201142231. PMid:22359100.

Schally AV, Arimura A, Baba Y, Nair RM, Matsuo H, Redding TW, Debeljuk L, White WF. Isolation and properties of the FSH and LH-releasing hormone. Biochem Biophys Res Commun. 1971;43(2):393-9. http://doi.org/10.1016/0006-291X(71)90766-2. PMid:4930860.

Seekford ZK, Tariq A, Macay GA, Jenkins KM, Dickson MJ, Melo GD, Pohler KG, Sheldon IM, Bromfield JJ. Uterine disease in dairy cows is associated with contemporaneous perturbations to ovarian function. Theriogenology. 2025;232:20-9. http://doi.org/10.1016/j.theriogenology.2024.10.028. PMid:39504867.

Sendžikaitė G, Kelsey G. The role and mechanisms of DNA methylation in the oocyte. Essays Biochem. 2019;63(6):691-705. http://doi.org/10.1042/EBC20190043. PMid:31782490.

Shehab-El-Deen MA, Leroy JL, Fadel MS, Saleh SY, Maes D, van Soom A. Biochemical changes in the follicular fluid of the dominant follicle of high producing dairy cows exposed to heat stress early post-partum. Anim Reprod Sci. 2010;117(3-4):189-200. http://doi.org/10.1016/j.anireprosci.2009.04.013. PMid:19481380.

Shirasuna K, Shimizu T, Matsui M, Miyamoto A. Emerging roles of immune cells in luteal angiogenesis. Reprod Fertil Dev. 2013;25(2):351-61. http://doi.org/10.1071/RD12096. PMid:22951090.

Sirard M, Blondin P. Oocyte maturation and IVF in cattle. Anim Reprod Sci. 1996;42(1-4):417-26. http://doi.org/10.1016/0378-4320(96)01518-7.

Smith MF, McIntush EW, Smith GW. Mechanisms associated with corpus luteum development. J Anim Sci. 1994;72(7):1857-72. http://doi.org/10.2527/1994.7271857x. PMid:7928766.

Spicer LJ. Proteolytic degradation of insulin-like growth factor binding proteins by ovarian follicles: a control mechanism for selection of dominant follicles. Biol Reprod. 2004;70(5):1223-30. http://doi.org/10.1095/biolreprod.103.021006. PMid:14668213.

Stouffer RL, Xu F, Duffy DM. Molecular control of ovulation and luteinization in the primate follicle. Front Biosci. 2007;12(1):297-307. http://doi.org/10.2741/2065. PMid:17127300.

Sunderland SJ, Crowe MA, Boland MP, Roche JF, Ireland JJ. Selection, dominance and atresia of follicles during the oestrous cycle of heifers. J Reprod Fertil. 1994;101(3):547-55. http://doi.org/10.1530/jrf.0.1010547. PMid:7966007.

Tariq A, Seekford ZK, Bromfield JJ. Inflammation during oocyte maturation reduces developmental competence and increases apoptosis in blastocysts†. Biol Reprod. 2025;112(3):420-33. http://doi.org/10.1093/biolre/ioae180. PMid:39665379.

Telfer EE, Grosbois J, Odey YL, Rosario R, Anderson RA. Making a good egg: human oocyte health, aging, and in vitro development. Physiol Rev. 2023;103(4):2623-77. http://doi.org/10.1152/physrev.00032.2022. PMid:37171807.

van Blerkom J. Occurrence and developmental consequences of aberrant cellular organization in meiotically mature human oocytes after exogenous ovarian hyperstimulation. J Electron Microsc Tech. 1990;16(4):324-46. http://doi.org/10.1002/jemt.1060160405. PMid:2250186.

Viuff D, Avery B, Greve T, King WA, Hyttel P. Transcriptional activity in in vitro produced bovine two- and four-cell embryos. Mol Reprod Dev. 1996;43(2):171-9. http://doi.org/10.1002/(SICI)1098-2795(199602)43:2<171::AID-MRD6>3.0.CO;2-O. PMid:8824915.

Viuff D, Hyttel P, Avery B, Vajta G, Greve T, Callesen H, Thomsen PD. Ribosomal ribonucleic acid is transcribed at the 4-cell stage in in vitro-produced bovine embryos. Biol Reprod. 1998;59(3):626-31. http://doi.org/10.1095/biolreprod59.3.626. PMid:9716563.

Walker BN, Biase FH. The blueprint of RNA storages relative to oocyte developmental competence in cattle (Bos taurus). Biol Reprod. 2020;102(4):784-94. http://doi.org/10.1093/biolre/ioaa015. PMid:31982908.

Walsh SW, Mehta JP, McGettigan PA, Browne JA, Forde N, Alibrahim RM, Mulligan FJ, Loftus B, Crowe MA, Matthews D, Diskin M, Mihm M, Evans AC. Effect of the metabolic environment at key stages of follicle development in cattle: focus on steroid biosynthesis. Physiol Genomics. 2012a;44(9):504-17. http://doi.org/10.1152/physiolgenomics.00178.2011. PMid:22414914.

Walsh SW, Fair T, Browne JA, Evans ACO, McGettigan PA. Physiological status alters immunological regulation of bovine follicle differentiation in dairy cattle. J Reprod Immunol. 2012b;96(1-2):34-44. http://doi.org/10.1016/j.jri.2012.07.002. PMid:22980436.

Zhang Q, Zhang J, Chang G, Zhao K, Yao Y, Liu L, Du Z, Wang Y, Guo X, Zhao Z, Zeng W, Gao S. Decoding molecular features of bovine oocyte fate during antral follicle growth via single-cell multi-omics analysis†. Biol Reprod. 2024;111(4):815-33. http://doi.org/10.1093/biolre/ioae114. PMid:39058647.
 


Submitted date:
05/26/2025

Accepted date:
07/08/2025

68baf137a9539539da1df59f animreprod Articles
Links & Downloads

Anim Reprod

Share this page
Page Sections