Animal Reproduction (AR)
https://www.animal-reproduction.org/article/doi/10.1590/1984-3143-AR2025-0066
Animal Reproduction (AR)
Thematic Section: 38th Annual Meeting of the Brazilian Embryo Technology Society (SBTE)

Advances in ovarian follicle culture systems: exploring the interplay between cells, matrix, and ovarian architecture

Alberto Maria Luciano; Noemi Monferini; Ludovica Donadini; Pritha Dey; Fernanda Fagali Franchi; Valentina Lodde; Federica Franciosi

Downloads: 1
Views: 6

Abstract

The ability to develop oocytes from the earliest follicular stages through maturation and fertilization in vitro would revolutionize fertility preservation in human medicine and animal breeding. Instead, current assisted reproductive technologies rely only on a limited portion of the female gamete reserve, corresponding to the antral population, while the preantral follicle reserve remains unexploited, mainly due to a lack of knowledge regarding the mechanisms that guide preantral follicle differentiation and folliculogenesis in vitro. This review highlights the efforts made thus far and suggests an approach to studying the mechanisms and ovarian environment to enhance preantral follicle culture systems.

Keywords

preantral follicles, culture system, 3D, ovary, scaffold

References

Adams GP, Pierson RA. Bovine model for study of ovarian follicular dynamics in humans. Theriogenology. 1995;43(1):113-20. http://doi.org/10.1016/0093-691X(94)00015-M.

Albertini DF, Combelles CM, Benecchi E, Carabatsos MJ. Cellular basis for paracrine regulation of ovarian follicle development. Reproduction. 2001;121(5):647-53. http://doi.org/10.1530/rep.0.1210647. PMid:11427152.

Albertini DF, Sanfins A, Combelles CM. Origins and manifestations of oocyte maturation competencies. Reprod Biomed Online. 2003;6(4):410-5. http://doi.org/10.1016/S1472-6483(10)62159-1. PMid:12831584.

Amargant F, Manuel SL, Tu Q, Parkes WS, Rivas F, Zhou LT, Rowley JE, Villanueva CE, Hornick JE, Shekhawat GS, Wei JJ, Pavone ME, Hall AR, Pritchard MT, Duncan FE. Ovarian stiffness increases with age in the mammalian ovary and depends on collagen and hyaluronan matrices. Aging Cell. 2020;19(11):e13259. http://doi.org/10.1111/acel.13259. PMid:33079460.

Anderson E, Albertini DF. Gap junctions between the oocyte and companion follicle cells in the mammalian ovary. J Cell Biol. 1976;71(2):680-6. http://doi.org/10.1083/jcb.71.2.680. PMid:825522.

Babayev E, Xu M, Shea LD, Woodruff TK, Duncan FE. Follicle isolation methods reveal plasticity of granulosa cell steroidogenic capacity during mouse in vitro follicle growth. Mol Hum Reprod. 2022;28(10):gaac033. http://doi.org/10.1093/molehr/gaac033. PMid:36069625.

Baerwald AR, Adams GP, Pierson RA. A new model for ovarian follicular development during the human menstrual cycle. Fertil Steril. 2003;80(1):116-22. http://doi.org/10.1016/S0015-0282(03)00544-2. PMid:12849812.

Baerwald AR, Adams GP, Pierson RA. Ovarian antral folliculogenesis during the human menstrual cycle: a review. Hum Reprod Update. 2012;18(1):73-91. http://doi.org/10.1093/humupd/dmr039. PMid:22068695.

Barros RG, Lodde V, Franciosi F, Luciano AM. In vitro culture strategy for oocytes from early antral follicle in cattle. J Vis Exp. 2020;(161). http://doi.org/10.3791/61625-v. PMid:32716390.

Belli M, Vigone G, Merico V, Redi CA, Zuccotti M, Garagna S. Towards a 3D culture of mouse ovarian follicles. Int J Dev Biol. 2012;56(10-12):931-7. http://doi.org/10.1387/ijdb.120175mz. PMid:23417415.

Biswas A, Ng BH, Prabhakaran VS, Chan CJ. Squeezing the eggs to grow: the mechanobiology of mammalian folliculogenesis. Front Cell Dev Biol. 2022;10:1038107. http://doi.org/10.3389/fcell.2022.1038107. PMid:36531957.

Bjarkadottir BD, Walker CA, Fatum M, Lane S, Williams SA. Analysing culture methods of frozen human ovarian tissue to improve follicle survival. Reproduction and Fertility. 2021;2(1):59-68. http://doi.org/10.1530/RAF-20-0058. PMid:35128433.

Bolton RL, Mooney A, Pettit MT, Bolton AE, Morgan L, Drake GJ, Appeltant R, Walker SL, Gillis JD, Hvilsom C. Resurrecting biodiversity: advanced assisted reproductive technologies and biobanking. Reprod Fertil. 2022;3(3):R121-46. http://doi.org/10.1530/RAF-22-0005. PMid:35928671.

Bonnet A, Cabau C, Bouchez O, Sarry J, Marsaud N, Foissac S, Woloszyn F, Mulsant P, Mandon-Pepin B. An overview of gene expression dynamics during early ovarian folliculogenesis: specificity of follicular compartments and bi-directional dialog. BMC Genomics. 2013;14(1):904. http://doi.org/10.1186/1471-2164-14-904. PMid:24350644.

Brieño-Enriquez MA, Duncan FE, Ghazi A, Klutstein M, Sebastiano V, Tyler J. Editorial: germ cell development and reproductive aging. Front Cell Dev Biol. 2022;10:1051539. http://doi.org/10.3389/fcell.2022.1051539. PMid:36313559.

Campbell BK, Souza C, Gong J, Webb R, Kendall N, Marsters P, Robinson G, Mitchell A, Telfer EE, Baird DT. Domestic ruminants as models for the elucidation of the mechanisms controlling ovarian follicle development in humans. Reprod Suppl. 2003;61:429-43. http://doi.org/10.1530/biosciprocs.5.032. PMid:14635953.

Campo H, López-Martínez S, Cervelló I. Decellularization methods of ovary in tissue engineering. Adv Exp Med Biol. 2021;1345:129-39. http://doi.org/10.1007/978-3-030-82735-9_11. PMid:34582019.

Candelaria JI, Botigelli RC, Guiltinan C, Shikanov A, Denicol AC. Three-dimensional culture in a bioengineered matrix and somatic cell complementation to improve growth and survival of bovine preantral follicles. J Assist Reprod Genet. 2025;42(5):1509-23. PMid:40392485.

Carabatsos MJ, Elvin J, Matzuk MM, Albertini DF. Characterization of oocyte and follicle development in growth differentiation factor-9-deficient mice. Dev Biol. 1998;204(2):373-84. http://doi.org/10.1006/dbio.1998.9087. PMid:9882477.

Chiti MC, Dolmans MM, Mortiaux L, Zhuge F, Ouni E, Shahri PAK, van Ruymbeke E, Champagne SD, Donnez J, Amorim CA. A novel fibrin-based artificial ovary prototype resembling human ovarian tissue in terms of architecture and rigidity. J Assist Reprod Genet. 2018;35(1):41-8. http://doi.org/10.1007/s10815-017-1091-3. PMid:29236205.

Cortvrindt R, Smitz J, Van Steirteghem AC. In-vitro maturation, fertilization and embryo development of immature oocytes from early preantral follicles from prepuberal mice in a simplified culture system. Hum Reprod. 1996;11(12):2656-66. http://doi.org/10.1093/oxfordjournals.humrep.a019188. PMid:9021369.

Crozet F, Letort G, Bulteau R, Silva C, Eichmuller A, Tortorelli AF, Blévinal J, Belle M, Dumont J, Piolot T, Dauphin A, Coulpier F, Chédotal A, Maître JL, Verlhac MH, Clarke HJ, Terret ME. Filopodia-like protrusions of adjacent somatic cells shape the developmental potential of oocytes. Life Sci Alliance. 2023;6(6):e202301963. http://doi.org/10.26508/lsa.202301963. PMid:36944420.

Denicol AC. What we can learn from the bovine embryo and mouse models to enable in vitro gametogenesis in cattle. Reprod Fertil Dev. 2024;37(1):RD24142. http://doi.org/10.1071/RD24142.

Dey P, Monferini N, Donadini L, Lodde V, Franciosi F, Luciano AM. A spotlight on factors influencing the in vitro folliculogenesis of isolated preantral follicles. J Assist Reprod Genet. 2024a;41(12):3287-300. http://doi.org/10.1007/s10815-024-03277-5. PMid:39373807.

Dey P, Monferini N, Donadini L, Lodde V, Franciosi F, Luciano AM. Method of isolation and in vitro culture of primordial follicles in bovine animal model. Methods Mol Biol. 2024b;2770:171-82. http://doi.org/10.1007/978-1-0716-3698-5_13. PMid:38351454.

Dey P, Monferini N, Donadini L, Zambelli F, Rabaglino MB, Lodde V, Franciosi F, Luciano AM. Early signaling pathways during in vitro culture of isolated primordial follicles. Mol Hum Reprod. 2025;31(3):gaaf026. http://doi.org/10.1093/molehr/gaaf026. PMid:40489658.

Dri MK, Klinger FG, De Felici M. The ovarian reserve as target of insulin/IGF and ROS in metabolic disorder-dependent ovarian dysfunctions. Reproduction and Fertility. 2021;2(3):R103-12. http://doi.org/10.1530/RAF-21-0038. PMid:35118400.

Ebrahimi M, Dattena M, Mara L, Pasciu V, Sotgiu F, Chessa F, Luciano AM, Berlinguer F. In vitro production of meiotically competent oocytes from sheep early antral follicles: a long in vitro culture strategy. Theriogenology. 2024;226:253-62. http://doi.org/10.1016/j.theriogenology.2024.06.030. PMid:38950486.

Ebrahimi M, Mara L, Succu S, Gadau SD, Palmerini MG, Chessa F, Dattena M, Sotgiu FD, Pasciu V, Mascitti IA, Macchiarelli G, Luciano AM, Berlinguer F. The effect of single versus group culture on cumulus-oocyte complexes from early antral follicles. J Assist Reprod Genet. 2025;42(3):961-76. http://doi.org/10.1007/s10815-025-03404-w. PMid:39873925.

Eppig JJ, O’Brien MJ. Development in vitro of mouse oocytes from primordial follicles. Biol Reprod. 1996;54(1):197-207. http://doi.org/10.1095/biolreprod54.1.197. PMid:8838017.

Eppig JJ. Oocyte control of ovarian follicular development and function in mammals. Reproduction. 2001;122(6):829-38. http://doi.org/10.1530/rep.0.1220829. PMid:11732978.

Erickson BH. Development and senescence of the postnatal bovine ovary. J Anim Sci. 1966;25(3):800-5. http://doi.org/10.2527/jas1966.253800x. PMid:6007918.

Faddy MJ, Gosden RG, Gougeon A, Richardson SJ, Nelson JF. Accelerated disappearance of ovarian follicles in mid-life: implications for forecasting menopause. Hum Reprod. 1992;7(10):1342-6. http://doi.org/10.1093/oxfordjournals.humrep.a137570. PMid:1291557.

Fair T, Hulshof SCJ, Hyttel P, Greve T, Boland M. Oocyte ultrastructure in bovine primordial to early tertiary follicles. Anat Embryol. 1997;195(4):327-36. http://doi.org/10.1007/s004290050052. PMid:9108198.

Fair T, Lonergan P. The oocyte: the key player in the success of assisted reproduction technologies. Reprod Fertil Dev. 2023;36(2):133-48. http://doi.org/10.1071/RD23164. PMid:38064189.

Findlay JK, Hutt KJ, Hickey M, Anderson RA. How is the number of primordial follicles in the ovarian reserve established? Biol Reprod. 2015;93(5):111. http://doi.org/10.1095/biolreprod.115.133652. PMid:26423124.

Fiorentino G, Cimadomo D, Innocenti F, Soscia D, Vaiarelli A, Ubaldi FM, Gennarelli G, Garagna S, Rienzi L, Zuccotti M. Biomechanical forces and signals operating in the ovary during folliculogenesis and their dysregulation: implications for fertility. Hum Reprod Update. 2023;29(1):1-23. http://doi.org/10.1093/humupd/dmac031. PMid:35856663.

Forabosco A, Sforza C. Establishment of ovarian reserve: a quantitative morphometric study of the developing human ovary. Fertil Steril. 2007;88(3):675-83. http://doi.org/10.1016/j.fertnstert.2006.11.191. PMid:17434504.

Franciosi F, Coticchio G, Lodde V, Tessaro I, Modina SC, Fadini R, Dal Canto M, Renzini MM, Albertini DF, Luciano AM. Natriuretic peptide precursor C delays meiotic resumption and sustains gap junction-mediated communication in bovine cumulus-enclosed oocytes. Biol Reprod. 2014;91(3):61. http://doi.org/10.1095/biolreprod.114.118869. PMid:25078681.

Frost ER, Gilchrist RB. Making human eggs in a dish: are we close? Trends Biotechnol. 2024;42(2):168-78. http://doi.org/10.1016/j.tibtech.2023.07.007. PMid:37625913.

Gargus ES, Woodruff TK. Contributions of ovarian stromal cells to follicle culture. In: Donnez J, Kim SS, editors. Fertility preservation. Cambridge: Cambridge University Press; 2021. p. 341-54. http://doi.org/10.1017/9781108784368.031.

Ge W, Li L, Dyce PW, De Felici M, Shen W. Establishment and depletion of the ovarian reserve: physiology and impact of environmental chemicals. Cell Mol Life Sci. 2019;76(9):1729-46. http://doi.org/10.1007/s00018-019-03028-1. PMid:30810760.

Gilchrist RB, Luciano AM, Richani D, Zeng HT, Wang X, Vos MD, Sugimura S, Smitz J, Richard FJ, Thompson JG. Oocyte maturation and quality: role of cyclic nucleotides. Reproduction. 2016;152(5):R143-57. http://doi.org/10.1530/REP-15-0606. PMid:27422885.

Gougeon A, Ecochard R, Thalabard JC. Age-related changes of the population of human ovarian follicles: increase in the disappearance rate of non-growing and early-growing follicles in aging women. Biol Reprod. 1994;50(3):653-63. http://doi.org/10.1095/biolreprod50.3.653. PMid:8167237.

Gougeon A. Regulation of ovarian follicular development in primates: facts and hypotheses. Endocr Rev. 1996;17(2):121-55. http://doi.org/10.1210/edrv-17-2-121. PMid:8706629.

Gougeon A. Dynamics of human follicular growth: morphologic, dynamic, and functional aspects. In: Leung PCK, Adashi EY, editors. The ovary. London: Academic Press; 2004. p. 25-43.

Greve T, Schmidt KT, Kristensen SG, Ernst E, Andersen CY. Evaluation of the ovarian reserve in women transplanted with frozen and thawed ovarian cortical tissue. Fertil Steril. 2012;97(6):1394-8 e1. http://doi.org/10.1016/j.fertnstert.2012.02.036. PMid:22425199.

Grosbois J, Bailie EC, Kelsey TW, Anderson RA, Telfer EE. Spatio-temporal remodelling of the composition and architecture of the human ovarian cortical extracellular matrix during in vitro culture. Hum Reprod. 2023;38(3):444-58. http://doi.org/10.1093/humrep/dead008. PMid:36721914.

Grubliauskaitė M, Vlieghe H, Moghassemi S, Dadashzadeh A, Camboni A, Gudleviciene Z, Amorim CA. Influence of ovarian stromal cells on human ovarian follicle growth in a 3D environment. Hum Reprod Open. 2024;2024(1):hoad052. http://doi.org/10.1093/hropen/hoad052. PMid:38204939.

Guo Y, Jia L, Zeng H, Sun P, Su W, Li T, Liang X, Fang C. Neurotrophin-4 promotes in vitro development and maturation of human secondary follicles yielding metaphase II oocytes and successful blastocyst formation. Hum Reprod Open. 2024;2024(1):hoae005. http://doi.org/10.1093/hropen/hoae005. PMid:38371224.

Gutierrez CG, Ralph JH, Telfer EE, Wilmut I, Webb R. Growth and antrum formation of bovine preantral follicles in long-term culture in vitro. Biol Reprod. 2000;62(5):1322-8. http://doi.org/10.1095/biolreprod62.5.1322. PMid:10775183.

Hansen KR, Knowlton NS, Thyer AC, Charleston JS, Soules MR, Klein NA. A new model of reproductive aging: the decline in ovarian non-growing follicle number from birth to menopause. Hum Reprod. 2008;23(3):699-708. http://doi.org/10.1093/humrep/dem408. PMid:18192670.

Hoage TR, Cameron IL. Folliculogenesis in the ovary of the mature mouse: a radioautographic study. Anat Rec. 1976;184(4):699-709. http://doi.org/10.1002/ar.1091840409. PMid:1259183.

Hornick JE, Duncan FE, Shea LD, Woodruff TK. Isolated primate primordial follicles require a rigid physical environment to survive and grow in vitro. Hum Reprod. 2012;27(6):1801-10. http://doi.org/10.1093/humrep/der468. PMid:22456922.

Hsueh AJ, Kawamura K, Cheng Y, Fauser BC. Intraovarian control of early folliculogenesis. Endocr Rev. 2015;36(1):1-24. http://doi.org/10.1210/er.2014-1020. PMid:25202833.

Hussein RS, Khan Z, Zhao Y. Fertility preservation in women: indications and options for therapy. Mayo Clin Proc. 2020;95(4):770-83. http://doi.org/10.1016/j.mayocp.2019.10.009. PMid:32247351.

Jensen C, Teng Y. Is it time to start transitioning from 2D to 3D cell culture? Front Mol Biosci. 2020;7:33. http://doi.org/10.3389/fmolb.2020.00033. PMid:32211418.

Kagawa N, Silber S, Kuwayama M. Successful vitrification of bovine and human ovarian tissue. Reprod Biomed Online. 2009;18(4):568-77. http://doi.org/10.1016/S1472-6483(10)60136-8. PMid:19401001.

Kapałczyńska M, Kolenda T, Przybyla W, Zajaczkowska M, Teresiak A, Filas V, Ibbs M, Bliźniak R, Łuczewski Ł, Lamperska K. 2D and 3D cell cultures - a comparison of different types of cancer cell cultures. Arch Med Sci. 2018;14(4):910-9. http://doi.org/10.5114/aoms.2016.63743. PMid:30002710.

Karen Nenonene E, Trottier-Lavoie M, Marchais M, Bastien A, Gilbert I, Macaulay AD, Khandjian EW, Maria Luciano A, Lodde V, Viger RS, Robert C. Roles of the cumulus-oocyte transzonal network and the Fragile X protein family in oocyte competence. Reproduction. 2023;165(2):209-19. http://doi.org/10.1530/REP-22-0165. PMid:36445258.

Kawamura K, Cheng Y, Suzuki N, Deguchi M, Sato Y, Takae S, Ho CH, Kawamura N, Tamura M, Hashimoto S, Sugishita Y, Morimoto Y, Hosoi Y, Yoshioka N, Ishizuka B, Hsueh AJ. Hippo signaling disruption and Akt stimulation of ovarian follicles for infertility treatment. Proc Natl Acad Sci USA. 2013;110(43):17474-9. http://doi.org/10.1073/pnas.1312830110. PMid:24082083.

Kidder GM, Mhawi AA. Gap junctions and ovarian folliculogenesis. Reproduction. 2002;123(5):613-20. http://doi.org/10.1530/rep.0.1230613. PMid:12006089.

Kinnear HM, Tomaszewski CE, Chang FL, Moravek MB, Xu M, Padmanabhan V, Shikanov A. The ovarian stroma as a new frontier. Reproduction. 2020;160(3):R25-39. http://doi.org/10.1530/REP-19-0501. PMid:32716007.

Knight PG, Glister C. TGF-beta superfamily members and ovarian follicle development. Reproduction. 2006;132(2):191-206. http://doi.org/10.1530/rep.1.01074. PMid:16885529.

Kreeger PK, Deck JW, Woodruff TK, Shea LD. The in vitro regulation of ovarian follicle development using alginate-extracellular matrix gels. Biomaterials. 2006;27(5):714-23. http://doi.org/10.1016/j.biomaterials.2005.06.016. PMid:16076485.

Lambalk CB, de Koning CH, Flett A, van Kasteren Y, Gosden R, Homburg R. Assessment of ovarian reserve. Ovarian biopsy is not a valid method for the prediction of ovarian reserve. Hum Reprod. 2004;19(5):1055-9. http://doi.org/10.1093/humrep/deh216. PMid:15044402.

Laronda MM, Duncan FE, Hornick JE, Xu M, Pahnke JE, Whelan KA, Shea LD, Woodruff TK. Alginate encapsulation supports the growth and differentiation of human primordial follicles within ovarian cortical tissue. J Assist Reprod Genet. 2014;31(8):1013-28. http://doi.org/10.1007/s10815-014-0252-x. PMid:24845158.

Laronda MM, Jakus AE, Whelan KA, Wertheim JA, Shah RN, Woodruff TK. Initiation of puberty in mice following decellularized ovary transplant. Biomaterials. 2015;50:20-9. http://doi.org/10.1016/j.biomaterials.2015.01.051. PMid:25736492.

Li J, Zhang Y, Zheng N, Li B, Yang J, Zhang C, Xia G, Zhang M. CREB activity is required for mTORC1 signaling-induced primordial follicle activation in mice. Histochem Cell Biol. 2020;154(3):287-99. http://doi.org/10.1007/s00418-020-01888-4. PMid:32495040.

Li R, Albertini DF. The road to maturation: somatic cell interaction and self-organization of the mammalian oocyte. Nat Rev Mol Cell Biol. 2013;14(3):141-52. http://doi.org/10.1038/nrm3531. PMid:23429793.

Lodde V, Monferini N, Plevridi M, Dey P, Donadini L, Fagali Franchi F, et al. Approaches to in vitro oocyte growth in domestic farm mammals: how and why? Anim Reprod. 2025. Forthcoming.

Luciano AM, Franciosi F, Modina SC, Lodde V. Gap junction-mediated communications regulate chromatin remodeling during bovine oocyte growth and differentiation through cAMP-dependent mechanism(s). Biol Reprod. 2011;85(6):1252-9. http://doi.org/10.1095/biolreprod.111.092858. PMid:21816847.

Luciano AM, Sirard MA. Successful in vitro maturation of oocytes: a matter of follicular differentiation. Biol Reprod. 2018;98(2):162-9. http://doi.org/10.1093/biolre/iox149. PMid:29165545.

Luciano AM, Franciosi F, Barros RG, Dieci C, Lodde V. The variable success of in vitro maturation: can we do better? Anim Reprod. 2018;15(Suppl 1):727-36. http://doi.org/10.21451/1984-3143-AR2018-0021. PMid:36249849.

Luciano AM, Barros RG, Soares ACS, Buratini J, Lodde V, Franciosi F. Recreating the follicular environment: a customized approach for in vitro culture of bovine oocytes based on the origin and differentiation state. Methods Mol Biol. 2021;2273:1-15. http://doi.org/10.1007/978-1-0716-1246-0_1. PMid:33604842.

Lussier JG, Matton P, Dufour JJ. Growth rates of follicles in the ovary of the cow. J Reprod Fertil. 1987;81(2):301-7. http://doi.org/10.1530/jrf.0.0810301. PMid:3430454.

Macaulay AD, Gilbert I, Caballero J, Barreto R, Fournier E, Tossou P, Sirard MA, Clarke HJ, Khandjian ÉW, Richard FJ, Hyttel P, Robert C. The gametic synapse: RNA transfer to the bovine oocyte. Biol Reprod. 2014;91(4):90. http://doi.org/10.1095/biolreprod.114.119867. PMid:25143353.

Malhi PS, Adams GP, Singh J. Bovine model for the study of reproductive aging in women: follicular, luteal, and endocrine characteristics. Biol Reprod. 2005;73(1):45-53. http://doi.org/10.1095/biolreprod.104.038745. PMid:15744017.

Martinez CA, Rizos D, Rodriguez-Martinez H, Funahashi H. Oocyte-cumulus cells crosstalk: new comparative insights. Theriogenology. 2023;205:87-93. http://doi.org/10.1016/j.theriogenology.2023.04.009. PMid:37105091.

Masciangelo R, Hossay C, Chiti MC, Manavella DD, Amorim CA, Donnez J, Dolmans MM. Role of the PI3K and Hippo pathways in follicle activation after grafting of human ovarian tissue. J Assist Reprod Genet. 2020;37(1):101-8. http://doi.org/10.1007/s10815-019-01628-1. PMid:31732846.

Matsuzaki S. Mechanobiology of the female reproductive system. Reprod Med Biol. 2021;20(4):371-401. http://doi.org/10.1002/rmb2.12404. PMid:34646066.

McDowell HB, McElhinney KL, Tsui EL, Laronda MM. Generation of tailored extracellular matrix hydrogels for the study of In vitro folliculogenesis in response to matrisome-dependent biochemical cues. Bioengineering. 2024;11(6):543. http://doi.org/10.3390/bioengineering11060543. PMid:38927779.

McGee EA, Hsueh AJW. Initial and cyclic recruitment of ovarian follicles. Endocr Rev. 2000;21(2):200-14. http://doi.org/10.1210/edrv.21.2.0394. PMid:10782364.

McLaughlin M, Albertini DF, Wallace WHB, Anderson RA, Telfer EE. Metaphase II oocytes from human unilaminar follicles grown in a multi-step culture system. Mol Hum Reprod. 2018;24(3):135-42. http://doi.org/10.1093/molehr/gay002. PMid:29390119.

Ménézo YJR, Hérubel F. Mouse and bovine models for human IVF. Reprod Biomed Online. 2002;4(2):170-5. http://doi.org/10.1016/S1472-6483(10)61936-0. PMid:12470581.

Modina SC, Tessaro I, Lodde V, Franciosi F, Corbani D, Luciano AM. Reductions in the number of mid-sized antral follicles are associated with markers of premature ovarian senescence in dairy cows. Reprod Fertil Dev. 2014;26(2):235-44. http://doi.org/10.1071/RD12295. PMid:23327793.

Monferini N. Advances in ovarian follicle culture systems: exploring the interplay between cells, matrix, and ovarian architecture [Internet]. BioRender; 2025 [cited 2025 May 20]. Available from: https://BioRender.com/lzeyd59

Monferini N, Dey P, Donadini L, Katsakoglou N, Franciosi F, Lodde V, Luciano AM. Age-dependent high-yield isolation of primordial, primary, and early secondary follicles from the bovine ovarian cortex. Reproduction. 2024;167(6):e240060. http://doi.org/10.1530/REP-24-0060. PMid:38579797.

Monniaux D, Cadoret V, Clément F, Dalbies-Tran R, Elis S, Fabre S, et al. Folliculogenesis. In: Huhtaniemi I, Martini L, editors. Encyclopedia of endocrine diseases. Oxford: Elsevier; 2019. p. 377-98.

Monniaux D, Clement F, Dalbies-Tran R, Estienne A, Fabre S, Mansanet C, Monget P. The ovarian reserve of primordial follicles and the dynamic reserve of antral growing follicles: what is the link? Biol Reprod. 2014;90(4):85. http://doi.org/10.1095/biolreprod.113.117077. PMid:24599291.

Moor RM, Dai Y, Lee C, Fulka J Jr. Oocyte maturation and embryonic failure. Hum Reprod Update. 1998;4(3):223-36. http://doi.org/10.1093/humupd/4.3.223. PMid:9741707.

Motta PM, Makabe S, Naguro T, Correr S. Oocyte follicle cells association during development of human ovarian follicle. A study by high resolution scanning and transmission electron microscopy. Arch Histol Cytol. 1994;57(4):369-94. http://doi.org/10.1679/aohc.57.369. PMid:7880591.

Naba A, Clauser KR, Ding H, Whittaker CA, Carr SA, Hynes RO. The extracellular matrix: tools and insights for the “omics” era. Matrix Biol. 2016;49:10-24. http://doi.org/10.1016/j.matbio.2015.06.003. PMid:26163349.

Nagamatsu G, Shimamoto S, Hamazaki N, Nishimura Y, Hayashi K. Mechanical stress accompanied with nuclear rotation is involved in the dormant state of mouse oocytes. Sci Adv. 2019;5(6):eaav9960. http://doi.org/10.1126/sciadv.aav9960. PMid:31249869.

O’Brien MJ, Pendola JK, Eppig JJ. A revised protocol for in vitro development of mouse oocytes from primordial follicles dramatically improves their developmental competence. Biol Reprod. 2003;68(5):1682-6. http://doi.org/10.1095/biolreprod.102.013029. PMid:12606400.

Ouni E, Vertommen D, Chiti MC, Dolmans MM, Amorim CA. A draft map of the human ovarian proteome for tissue engineering and clinical applications. Mol Cell Proteomics. 2019;18(Suppl 1):S159-73. http://doi.org/10.1074/mcp.RA117.000469. PMid:29475978.

Ouni E, Bouzin C, Dolmans MM, Marbaix E, Pyr Dit Ruys S, Vertommen D, Amorim CA. Spatiotemporal changes in mechanical matrisome components of the human ovary from prepuberty to menopause. Hum Reprod. 2020;35(6):1391-410. http://doi.org/10.1093/humrep/deaa100. PMid:32539154.

Ouni E, Nedbal V, Da Pian M, Cao H, Haas KT, Peaucelle A, van Kerk O, Herinckx G, Marbaix E, Dolmans MM, Tuuri T, Otala M, Amorim CA, Vertommen D. Proteome-wide and matrisome-specific atlas of the human ovary computes fertility biomarker candidates and open the way for precision oncofertility. Matrix Biol. 2022;109:91-120. http://doi.org/10.1016/j.matbio.2022.03.005. PMid:35341935.

Pietroforte S, Plough M, Amargant F. 2024. Age-associated increased stiffness of the ovarian microenvironment impairs follicle development and oocyte quality and rapidly alters follicle gene expression. bioRxiv. doi:http://doi.org/10.1101/2024.06.09.598134. PMid:38915651.

Plancha CES, Sanfins A, Rodrigues P, Albertini D. Cell polarity during folliculogenesis and oogenesis. Reprod Biomed Online. 2005;10(4):478-84. http://doi.org/10.1016/S1472-6483(10)60824-3. PMid:15901455.

Poirot C, Vacher-Lavenu MC, Helardot P, Guibert J, Brugieres L, Jouannet P. Human ovarian tissue cryopreservation: indications and feasibility. Hum Reprod. 2002;17(6):1447-52. http://doi.org/10.1093/humrep/17.6.1447. PMid:12042259.

Richard S, Anderson NJ, Zhou Y, Pankhurst MW. Mouse primary follicles experience slow growth rates after activation and progressive increases that influence the duration of the primary follicle phasedagger. Biol Reprod. 2023;109(5):684-92. http://doi.org/10.1093/biolre/ioad095. PMid:37552056.

Robert C. Nurturing the egg: the essential connection between cumulus cells and the oocyte. Reprod Fertil Dev. 2021;34(2):149-59. http://doi.org/10.1071/RD21282. PMid:35231386.

Rodgers RJ, Irving-Rodgers HF, Russell DL. Extracellular matrix of the developing ovarian follicle. Reproduction. 2003;126(4):415-24. http://doi.org/10.1530/rep.0.1260415. PMid:14525524.

Rodrigues P, Limback D, McGinnis L, Marques M, Aibar J, Plancha CE. Germ-Somatic Cell Interactions Are Involved in Establishing the Follicle Reserve in Mammals. Front Cell Dev Biol. 2021;9:674137. http://doi.org/10.3389/fcell.2021.674137. PMid:34195191.

Roness H, Gavish Z, Cohen Y, Meirow D. Ovarian follicle burnout: a universal phenomenon? Cell Cycle. 2013;12(20):3245-6. http://doi.org/10.4161/cc.26358. PMid:24036538.

Santos SS, Ferreira MA, Pinto JA, Sampaio RV, Carvalho AC, Silva TV, Costa NN, Cordeiro MS, Miranda MS, Ribeiro HF, Ohashi OM. Characterization of folliculogenesis and the occurrence of apoptosis in the development of the bovine fetal ovary. Theriogenology. 2013;79(2):344-50. http://doi.org/10.1016/j.theriogenology.2012.09.026. PMid:23140803.

Schmidt KL, Byskov AG, Nyboe Andersen A, Muller J, Yding Andersen C. Density and distribution of primordial follicles in single pieces of cortex from 21 patients and in individual pieces of cortex from three entire human ovaries. Hum Reprod. 2003;18(6):1158-64. http://doi.org/10.1093/humrep/deg246. PMid:12773440.

Silva-Santos KC, Santos GM, Siloto LS, Hertel MF, Andrade ER, Rubin MI, Sturion L, Melo-Sterza FA, Seneda MM. Estimate of the population of preantral follicles in the ovaries of Bos taurus indicus and Bos taurus taurus cattle. Theriogenology. 2011;76(6):1051-7. http://doi.org/10.1016/j.theriogenology.2011.05.008. PMid:21722949.

Sirard MA. The ovarian follicle of cows as a model for human. In: Constantinescu G, Schatten H, editors. Animal models and human reproduction. Hoboken: Wiley; 2017. http://doi.org/10.1002/9781118881286.ch6.

Tao T, Del Valle A. Human oocyte and ovarian tissue cryopreservation and its application. J Assist Reprod Genet. 2008;25(7):287-96. http://doi.org/10.1007/s10815-008-9236-z. PMid:18670872.

Telfer EE, Binnie JP, McCaffery FH, Campbell BK. In vitro development of oocytes from porcine and bovine primary follicles. Mol Cell Endocrinol. 2000;163(1-2):117-23. http://doi.org/10.1016/S0303-7207(00)00216-1. PMid:10963883.

Telfer EE, Grosbois J, Odey YL, Rosario R, Anderson RA. Making a good egg: human oocyte health, aging, and in vitro development. Physiol Rev. 2023;103(4):2623-77. http://doi.org/10.1152/physrev.00032.2022. PMid:37171807.

Tingen CM, Kiesewetter SE, Jozefik J, Thomas C, Tagler D, Shea L, Woodruff TK. A macrophage and theca cell-enriched stromal cell population influences growth and survival of immature murine follicles in vitro. Reproduction. 2011;141(6):809-20. http://doi.org/10.1530/REP-10-0483. PMid:21389078.

Walker CA, Bjarkadottir BD, Fatum M, Lane S, Williams SA. Variation in follicle health and development in cultured cryopreserved ovarian cortical tissue: a study of ovarian tissue from patients undergoing fertility preservation. Hum Fertil (Camb). 2021;24(3):188-98. http://doi.org/10.1080/14647273.2019.1616118. PMid:31117847.

Wallace WH, Kelsey TW. Human ovarian reserve from conception to the menopause. PLoS One. 2010;5(1):e8772. http://doi.org/10.1371/journal.pone.0008772. PMid:20111701.

Wandji SA, Srsen V, Voss AK, Eppig JJ, Fortune JE. Initiation in vitro of growth of bovine primordial follicles. Biol Reprod. 1996;55(5):942-8. http://doi.org/10.1095/biolreprod55.5.942. PMid:8902203.

Wang X, Wang L, Xiang W. Mechanisms of ovarian aging in women: a review. J Ovarian Res. 2023;16(1):67. http://doi.org/10.1186/s13048-023-01151-z. PMid:37024976.

Williams CJ, Erickson GF. Morphology and physiology of the ovary. In: Feingold KR, Anawalt B, Boyce A, Chrousos G, Dungan K, Grossman A, Hershman JM, Kaltsas G, Koch C, Kopp P, Korbonits M, McLachlan R, Morley JE, New M, Perreault L, Purnell J, Rebar R, Singer F, Trence DL, Vinik A, Wilson DP, editors. Endotext. South Dartmouth: MDText.com; 2000.

Yao K, Lau SW, Ge W. Differential regulation of Kit ligand A expression in the ovary by IGF-I via different pathways. Mol Endocrinol. 2014;28(1):138-50. http://doi.org/10.1210/me.2013-1186. PMid:24243489.

Zhang H, Risal S, Gorre N, Busayavalasa K, Li X, Shen Y, Bosbach B, Brännström M, Liu K. Somatic cells initiate primordial follicle activation and govern the development of dormant oocytes in mice. Curr Biol. 2014;24(21):2501-8. http://doi.org/10.1016/j.cub.2014.09.023. PMid:25438940.

Zhang J, Xia W, Zhou J, Qin S, Lin L, Zhao T, Wang H, Mi C, Hu Y, Chen Z, Zhu T, Yang X, Zhang T, Xia G, Ke Y, Wang C. Participation of preovulatory follicles in the activation of primordial follicles in mouse ovaries. Int J Biol Sci. 2024;20(10):3863-80. http://doi.org/10.7150/ijbs.95020. PMid:39113716.

Zhao Y, Zhang Y, Li J, Zheng N, Xu X, Yang J, Xia G, Zhang M. MAPK3/1 participates in the activation of primordial follicles through mTORC1-KITL signaling. J Cell Physiol. 2018;233(1):226-37. http://doi.org/10.1002/jcp.25868. PMid:28218391.

Zheng W, Zhang H, Gorre N, Risal S, Shen Y, Liu K. Two classes of ovarian primordial follicles exhibit distinct developmental dynamics and physiological functions. Hum Mol Genet. 2014;23(4):920-8. http://doi.org/10.1093/hmg/ddt486. PMid:24087793.

Zuccotti M, Merico V, Rebuzzini P, Belli M, Vigone G, Mulas F, Fassina L, Wruck W, Adjaye J, Bellazzi R, Garagna S. 3D culture of ovarian follicles: a system towards their engineering? Int J Dev Biol. 2015;59(4-6):211-6. http://doi.org/10.1387/ijdb.150172mz. PMid:26505254.
 


Submitted date:
05/20/2025

Accepted date:
06/30/2025

68b5dc0ca953954a545c9c52 animreprod Articles
Links & Downloads

Anim Reprod

Share this page
Page Sections