Animal Reproduction (AR)
https://www.animal-reproduction.org/article/doi/10.1590/1984-3143-AR2025-0052
Animal Reproduction (AR)
Thematic Section: 38th Annual Meeting of the Brazilian Embryo Technology Society (SBTE)

Selecting sires to improve reproductive success: key traits for enhanced fertility and embryo development

Froylan Sosa; Martha Sofia Ortega

Downloads: 1
Views: 7

Abstract

Embryo development is a complex process that requires several physiological and molecular events to happen harmoniously, and all of this begins with the interaction of the oocyte and sperm. The ability of an oocyte to become a healthy blastocyst is the result of several critical events that are determinants for the successful development of the embryo. Among these events are the sperm's ability to interact with and penetrate the oocyte, carry out syngamy, the developmental competence of the oocyte to support mitotic divisions, and the proper activation of the molecular machinery to regulate the embryo's developmental competence during the early stages of embryonic development. Some of these events originate from either the paternal or maternal side. The focus of this review is to explore the contributions of the paternal side to reproduction in general, with greater emphasis on early embryo development. A deeper understanding of these paternal factors and their influence on embryo development and overall fertility will support the development of new strategies for selecting sires to improve reproductive efficiency in cattle.

Keywords

sire fertility, embryo development, paternal contributions

References

Agarwal A, Saleh RA, Bedaiwy MA. Role of reactive oxygen species in the pathophysiology of human reproduction. Fertil Steril. 2003;79(4):829-43. http://doi.org/10.1016/S0015-0282(02)04948-8. PMid:12749418.

Al Naib A, Hanrahan JP, Lonergan P, Fair S. In vitro assessment of sperm from bulls of high and low field fertility. Theriogenology. 2011;76(1):161-7. http://doi.org/10.1016/j.theriogenology.2010.10.038. PMid:21396687.

Arangasamy A, Kasimanickam VR, DeJarnette JM, Kasimanickam RK. Association of CRISP2, CCT8, PEBP1 mRNA abundance in sperm and sire conception rate in Holstein bulls. Theriogenology. 2011;76(3):570-7. http://doi.org/10.1016/j.theriogenology.2011.03.009. PMid:21529916.

Avidor-Reiss T, Achinger L, Uzbekov R. The centriole’s role in miscarriages. Front Cell Dev Biol. 2022;10:864692. http://doi.org/10.3389/fcell.2022.864692. PMid:35300410.

Avidor-Reiss T, Carr A, Fishman EL. The sperm centrioles. Mol Cell Endocrinol. 2020;518:110987. http://doi.org/10.1016/j.mce.2020.110987. PMid:32810575.

Bardaweel SK, Gul M, Alzweiri M, Ishaqat A, ALSalamat HA, Bashatwah RM. Reactive oxygen species: the dual role in physiological and pathological conditions of the human body. Eurasian J Med. 2018;50(3):193-201. http://doi.org/10.5152/eurasianjmed.2018.17397. PMid:30515042.

Bazzi H, Anderson KV. Acentriolar mitosis activates a p53-dependent apoptosis pathway in the mouse embryo. Proc Natl Acad Sci USA. 2014;111(15):E1491-500. http://doi.org/10.1073/pnas.1400568111. PMid:24706806.

Bearden HJ, Hansel WM, Bratton RW. Fertilization and embryonic mortality rates of bulls with histories of either low or high fertility in artificial breeding. J Dairy Sci. 1956;39(3):312-8. http://doi.org/10.3168/jds.S0022-0302(56)94750-6.

Bernecic NC, Donnellan E, O’Callaghan E, Kupisiewicz K, O’Meara C, Weldon K, Lonergan P, Kenny DA, Fair S. Comprehensive functional analysis reveals that acrosome integrity and viability are key variables distinguishing artificial insemination bulls of varying fertility. J Dairy Sci. 2021;104(10):11226-41. http://doi.org/10.3168/jds.2021-20319. PMid:34253371.

Bittner L, Wyck S, Herrera C, Siuda M, Wrenzycki C, van Loon B, Bollwein H. Negative effects of oxidative stress in bovine spermatozoa on in vitro development and DNA integrity of embryos. Reprod Fertil Dev. 2018;30(10):1359-68. http://doi.org/10.1071/RD17533. PMid:29712617.

Borges E Jr, Zanetti BF, Setti AS, Braga DPAF, Provenza RR, Iaconelli A Jr. Sperm DNA fragmentation is correlated with poor embryo development, lower implantation rate, and higher miscarriage rate in reproductive cycles of non-male factor infertility. Fertil Steril. 2019;112(3):483-90. http://doi.org/10.1016/j.fertnstert.2019.04.029. PMid:31200969.

Butler ML, Bormann JM, Weaber RL, Grieger DM, Rolf MM. Selection for bull fertility: a review. Transl Anim Sci. 2019;4(1):423-41. http://doi.org/10.1093/tas/txz174. PMid:32705001.

Castillo J, Jodar M, Oliva R. The contribution of human sperm proteins to the development and epigenome of the preimplantation embryo. Hum Reprod Update. 2018;24(5):535-55. http://doi.org/10.1093/humupd/dmy017. PMid:29800303.

Castro LS, Assis PM, Siqueira AFP, Hamilton TRS, Mendes CM, Losano JDA, Nichi M, Visintin JA, Assumpção MEOA. Sperm oxidative stress is detrimental to embryo development: a dose-dependent study model and a new and more sensitive oxidative status evaluation. Oxid Med Cell Longev. 2016;2016(1):8213071. http://doi.org/10.1155/2016/8213071. PMid:26770658.

Castro LS, Siqueira AFP, Hamilton TRS, Mendes CM, Visintin JA, Assumpção MEOA. Effect of bovine sperm chromatin integrity evaluated using three different methods on in vitro fertility. Theriogenology. 2018;107:142-8. http://doi.org/10.1016/j.theriogenology.2017.11.006. PMid:29154161.

Cavazza T, Takeda Y, Politi AZ, Aushev M, Aldag P, Baker C, Choudhary M, Bucevicius J, Lukinavicius G, Elder K, Blayney M, Lucas-Hahn A, Niemann H, Herbert M, Schuh M. Parental genome unification is highly error-prone in mammalian embryos. Cell. 2021;184(11):2860-2877.e22. http://doi.org/10.1016/j.cell.2021.04.013. PMid:33964210.

Chatzimeletiou K, Morrison EE, Prapas N, Prapas Y, Handyside AH. The centrosome and early embryogenesis: clinical insights. Reprod Biomed Online. 2008;16(4):485-91. http://doi.org/10.1016/S1472-6483(10)60455-5. PMid:18413056.

Cho C, Jung-Ha H, Willis WD, Goulding EH, Stein P, Xu Z, Schultz RM, Hecht NB, Eddy EM. Protamine 2 deficiency leads to sperm DNA damage and embryo death in mice. Biol Reprod. 2003;69(1):211-7. http://doi.org/10.1095/biolreprod.102.015115. PMid:12620939.

Corbet N, Burns BM, Johnston DJ, Wolcott ML, Corbet DH, Venus BK, Li Y, McGowan MR, Holroyd RG. Male traits and herd reproductive capability in tropical beef cattle. 2. Genetic parameters of bull traits. Anim Prod Sci. 2013;53(2):101-13. http://doi.org/10.1071/AN12163.

Corboy MJ, Thomas PJ, Wigley WC. Aggresome formation. Methods Mol Biol. 2005;301:305-27. PMid:15917642.

Dai L, Zhao Z, Zhao R, Xiao S, Jiang H, Yue X, Li X, Gao Y, Liu J, Zhang J. Effects of novel single nucleotide polymorphisms of the FSH beta-subunit gene on semen quality and fertility in bulls. Anim Reprod Sci. 2009;114(1-3):14-22. http://doi.org/10.1016/j.anireprosci.2008.08.021. PMid:18829190.

Davenport KM, Lockhart K, Stoecklein K, Schnabel RD, Spencer TE, Ortega MS. Genome-wide association analyses identify single-nucleotide polymorphisms associated with in vitro embryo cleavage and blastocyst rates in Holstein bulls. J Dairy Sci. 2025;108(7):7775-89. http://doi.org/10.3168/jds.2025-26496. PMid:40306429.

Diaz-Miranda EA, Hamilton LE, Zigo M, Fallon L, Ortega MS, D’Avila Assumpção MEO, Guimarães JD, Sutovsky P. Regional abundances of binder of sperm (BSP) proteins are negatively associated with the quality of frozen-thawed bovine spermatozoa. Reproduction. 2023;167(1):e230305. PMid:37874784.

Dogan S, Vargovic P, Oliveira R, Belser LE, Kaya A, Moura A, Sutovsky P, Parrish J, Topper E, Memili E. Sperm protamine-status correlates to the fertility of breeding bulls. Biol Reprod. 2015;92(4):92. http://doi.org/10.1095/biolreprod.114.124255. PMid:25673563.

Eid L, Shamiah S, El-Regalaty H, El-Keraby F. Sperm DNA damage and embryonic development as related to fertility potential of buffalo bulls. J Anim Poult Prod. 2011;2(5):65-74. http://doi.org/10.21608/jappmu.2011.83340.

Esteves SC, Zini A, Coward RM, Evenson DP, Gosálvez J, Lewis SEM, Sharma R, Humaidan P. Sperm DNA fragmentation testing: summary evidence and clinical practice recommendations. Andrologia. 2021;53(2):e13874. http://doi.org/10.1111/and.13874. PMid:33108829.

Fallon L, Diaz-Miranda E, Hamilton L, Sutovsky P, Zigo M, Spencer TE, Ortega MS. The development of new biomarkers of spermatozoa quality in cattle. Front Vet Sci. 2023;10:1258295. http://doi.org/10.3389/fvets.2023.1258295. PMid:37901101.

Fallon L, Lockhart KN, Spencer TE, Ortega MS. High and low performing sires differ in their contributions to early embryonic stress in the bovine. Reprod Fertil Dev. 2024;36(15):RD24049. http://doi.org/10.1071/RD24049. PMid:39265060.

Fatehi AN, Bevers MM, Schoevers E, Roelen BA, Colenbrander B, Gadella BM. DNA damage in bovine sperm does not block fertilization and early embryonic development but induces apoptosis after the first cleavages. J Androl. 2006;27(2):176-88. http://doi.org/10.2164/jandrol.04152. PMid:16304212.

Faure C, Leveille P, Dupont C, Julia C, Chavatte-Palmer P, Sutton A, Levy R. Are superoxide dismutase 2 and nitric oxide synthase polymorphisms associated with idiopathic infertility? Antioxid Redox Signal. 2014;21(4):565-9. http://doi.org/10.1089/ars.2014.5831. PMid:24444339.

Fernández-Montoro A, Araftpoor E, De Coster T, Angel-Velez D, Bühler M, Hedia M, Gevaert K, Van Soom A, Pavani KC, Smits K. Decoding bull fertility in vitro: a proteomics exploration from sperm to blastocyst. Reproduction. 2025;169(4):e240296. http://doi.org/10.1530/REP-24-0296. PMid:40047448.

Fortes MRS, Satake N, Corbet DH, Corbet NJ, Burns BM, Moore SS, Boe-Hansen GB. Sperm protamine deficiency correlates with sperm DNA damage in Bos indicus bulls. Andrology. 2014;2(3):370-8. http://doi.org/10.1111/j.2047-2927.2014.00196.x. PMid:24634207.

Gacem S, Castello-Ruiz M, Hidalgo CO, Tamargo C, Santolaria P, Soler C, Yániz JL, Silvestre MA. Bull sperm SWATH-MS-based proteomics reveals link between high fertility and energy production, motility structures, and sperm-oocyte interaction. J Proteome Res. 2023;22(11):3607-24. http://doi.org/10.1021/acs.jproteome.3c00461. PMid:37782577.

Gong P, Liu J, Jiao X, Niu Y, Wang J, Wang X, Yang Z. Novel biallelic loss of EEF1B2 function links to autosomal recessive intellectual disability. Hum Mutat. 2022;43(3):299-304. http://doi.org/10.1002/humu.24329. PMid:35015920.

Gray S, Cohen PE. Control of meiotic crossovers: from double-strand break formation to designation. Annu Rev Genet. 2016;50(1):175-210. http://doi.org/10.1146/annurev-genet-120215-035111. PMid:27648641.

Guo Y, Fan Z, Zhao F, Ge S, Chu H, Wei Z, Khan R, Faisal M, Ayari-Akkari A, Yassin HM, Zhao X. Assessment of semen quality and anti-oxidative enzyme activity between bovine sex-sorted and non-sex-sorted frozen-thawed semen. Reprod Domest Anim. 2023;58(5):657-61. http://doi.org/10.1111/rda.14333. PMid:36808762.

Hamanaka RB, Chandel NS. Mitochondrial reactive oxygen species regulate cellular signaling and dictate biological outcomes. Trends Biochem Sci. 2010;35(9):505-13. http://doi.org/10.1016/j.tibs.2010.04.002. PMid:20430626.

Hidalgo MMT, Almeida ABM, Moraes FLZ, Marubayashi RYP, Souza FF, Barreiros TRR, Mello Martins MI. Sperm subpopulations influence the pregnancy rates in cattle. Reprod Domest Anim. 2021;56(8):1117-27. http://doi.org/10.1111/rda.13955. PMid:34013640.

Homma T, Takeda Y, Sakahara S, Ishii N, Kobayashi S, Abe H, Asao H, Fujii J. Heterozygous SOD1 deficiency in mice with an NZW background causes male infertility and an aberrant immune phenotype. Free Radic Res. 2019;53(11-12):1060-72. http://doi.org/10.1080/10715762.2019.1677901. PMid:31590572.

Hu T, Zhu H, Sun W, Hao H, Zhao X, Du W, Wang Z. Sperm pretreatment with glutathione improves IVF embryos development through increasing the viability and antioxidative capacity of sex-sorted and unsorted bull semen. J Integr Agric. 2016;15(10):2326-35. http://doi.org/10.1016/S2095-3119(16)61402-8.

Jeensuk S, Ortega MS, Saleem M, Hawryluk B, Scheffler TL, Hansen PJ. Actions of WNT family member 5A to regulate characteristics of development of the bovine preimplantation embryo. Biol Reprod. 2022;107(4):928-44. http://doi.org/10.1093/biolre/ioac127. PMid:35765196.

Jena AB, Samal RR, Kumari K, Pradhan J, Chainy GBN, Subudhi U, Pal S, Dandapat J. The benzene metabolite p-benzoquinone inhibits the catalytic activity of bovine liver catalase: A biophysical study. Int J Biol Macromol. 2021;167:871-80. http://doi.org/10.1016/j.ijbiomac.2020.11.044. PMid:33181220.

Ji G, Gu A, Wang Y, Huang C, Hu F, Zhou Y, Song L, Wang X. Genetic variants in antioxidant genes are associated with sperm DNA damage and risk of male infertility in a chinese population. Free Radic Biol Med. 2012;52(4):775-80. http://doi.org/10.1016/j.freeradbiomed.2011.11.032. PMid:22206979.

Kasimanickam RK, Kasimanickam VR, Arangasamy A, Kastelic JP. Sperm and seminal plasma proteomics of high- versus low-fertility Holstein bulls. Theriogenology. 2019;126:41-8. http://doi.org/10.1016/j.theriogenology.2018.11.032. PMid:30529997.

Khanal S, Leung MR, Royfman A, Fishman EL, Saltzman B, Bloomfield-Gadêlha H, Zeev-Ben-Mordehai T, Avidor-Reiss T. A dynamic basal complex modulates mammalian sperm movement. Nat Commun. 2021;12(1):3808. http://doi.org/10.1038/s41467-021-24011-0. PMid:34155206.

Kidder HE, Black WG, Wiltbank JN, Ulberg LC, Casida LE. Fertilization rates and embryonic death rates in cows bred to bulls of different levels of fertility. J Dairy Sci. 1954;37(6):691-7. http://doi.org/10.3168/jds.S0022-0302(54)91314-4.

Kumaresan A, Johannisson A, Al-Essawe EM, Morrell JM. Sperm viability, reactive oxygen species, and DNA fragmentation index combined can discriminate between above- and below-average fertility bulls. J Dairy Sci. 2017;100(7):5824-36. http://doi.org/10.3168/jds.2016-12484. PMid:28478003.

Lewis SEM, Aitken RJ. DNA damage to spermatozoa has impacts on fertilization and pregnancy. Cell Tissue Res. 2005;322(1):33-41. http://doi.org/10.1007/s00441-005-1097-5. PMid:15912407.

Li C-Y, Zhao Y-H, Hao H-S, Wang H-Y, Huang J-M, Yan C-L, Du WH, Pang YW, Zhang PP, Liu Y, Zhu HB, Zhao XM. Resveratrol significantly improves the fertilisation capacity of bovine sex-sorted semen by inhibiting apoptosis and lipid peroxidation. Sci Rep. 2018;8(1):7603. http://doi.org/10.1038/s41598-018-25687-z. PMid:29765076.

Li F, Duan X, Li M, Ma X. Sperm DNA fragmentation index affect pregnancy outcomes and offspring safety in assisted reproductive technology. Sci Rep. 2024;14(1):356. http://doi.org/10.1038/s41598-023-45091-6. PMid:38172506.

Lismer A, Kimmins S. Emerging evidence that the mammalian sperm epigenome serves as a template for embryo development. Nat Commun. 2023;14(1):2142. http://doi.org/10.1038/s41467-023-37820-2. PMid:37059740.

Lockhart KN, Drum JN, Balboula AZ, Spinka CM, Spencer TE, Ortega MS. Sire modulates developmental kinetics and transcriptome of the bovine embryo. Reproduction. 2023;166(5):337-48. http://doi.org/10.1530/REP-23-0030. PMid:37672361.

Lu KH, Seidel GE Jr. Effects of heparin and sperm concentration on cleavage and blastocyst development rates of bovine oocytes inseminated with flow cytometrically-sorted sperm. Theriogenology. 2004;62(5):819-30. http://doi.org/10.1016/j.theriogenology.2003.12.029. PMid:15251233.

Mateo S, Gázquez C, Guimerà M, Balasch J, Meistrich ML, Ballescà JL, Oliva R. Protamine 2 precursors (Pre-P2), protamine 1 to protamine 2 ratio (P1/P2), and assisted reproduction outcome. Fertil Steril. 2009;91(3):715-22. http://doi.org/10.1016/j.fertnstert.2007.12.047. PMid:18314125.

Merton H, Haring RM, Stap J, Hoebe RA, Aten JA. Effect of flow cytometrically sorted frozen/thawed semen on success rate of in vitro bovine embryo production. Theriogenology. 1997;47(1):295. http://doi.org/10.1016/S0093-691X(97)82422-3.

Meseguer M, de los Santos MJ, Simón C, Pellicer A, Remohí J, Garrido N. Effect of sperm glutathione peroxidases 1 and 4 on embryo asymmetry and blastocyst quality in oocyte donation cycles. Fertil Steril. 2006;86(5):1376-85. http://doi.org/10.1016/j.fertnstert.2006.03.053. PMid:16979635.

Middelkamp S, van Tol HTA, Spierings DCJ, Boymans S, Guryev V, Roelen BAJ, Lansdorp PM, Cuppen E, Kuijk EW. Sperm DNA damage causes genomic instability in early embryonic development. Sci Adv. 2020;6(16):eaaz7602. http://doi.org/10.1126/sciadv.aaz7602. PMid:32494621.

Moraes AA, Hansen PJ. Granulocyte-macrophage colony-stimulating factor promotes development of in vitro produced bovine embryos. Biol Reprod. 1997;57(5):1060-5. http://doi.org/10.1095/biolreprod57.5.1060. PMid:9369171.

Morohoshi A, Miyata H, Tokuhiro K, Iida-Norita R, Noda T, Fujihara Y, Ikawa M. Testis-enriched ferlin, FER1L5, is required for Ca2+-activated acrosome reaction and male fertility. Sci Adv. 2023;9(4):eade7607. http://doi.org/10.1126/sciadv.ade7607. PMid:36696506.

Nozawa K, Zhang Q, Miyata H, Devlin DJ, Yu Z, Oura S, Koyano T, Matsuyama M, Ikawa M, Matzuk MM. Knockout of serine-rich single-pass membrane protein 1 (Ssmem1) causes globozoospermia and sterility in male mice. Biol Reprod. 2020;103(2):244-53. http://doi.org/10.1093/biolre/ioaa040. PMid:32301969.

O’Callaghan E, Sánchez JM, McDonald M, Kelly AK, Hamdi M, Maicas C, Fair S, Kenny DA, Lonergan P. Sire contribution to fertilization failure and early embryo survival in cattle. J Dairy Sci. 2021;104(6):7262-71. http://doi.org/10.3168/jds.2020-19900. PMid:33714587.

Pausch H, Mapel XM. Review: genetic mutations affecting bull fertility. Animal. 2023;17(Suppl 1):100742. http://doi.org/10.1016/j.animal.2023.100742. PMid:37567657.

Peddinti D, Nanduri B, Kaya A, Feugang JM, Burgess SC, Memili E. Comprehensive proteomic analysis of bovine spermatozoa of varying fertility rates and identification of biomarkers associated with fertility. BMC Syst Biol. 2008;2(1):19. http://doi.org/10.1186/1752-0509-2-19. PMid:18294385.

Peñagaricano F. Genomics and dairy bull fertility. Vet Clin North Am Food Anim Pract. 2024;40:185-90. http://doi.org/10.1016/j.cvfa.2023.08.005. PMid:37669889.

Pizzino G, Irrera N, Cucinotta M, Pallio G, Mannino F, Arcoraci V, Squadrito F, Altavilla D, Bitto A. Oxidative stress: harms and benefits for human health. Oxid Med Cell Longev. 2017;2017(1):8416763. http://doi.org/10.1155/2017/8416763. PMid:28819546.

Prakash MA, Kumaresan A, Ebenezer Samuel King JP, Nag P, Sharma A, Sinha MK, Kamaraj E, Datta TK. Comparative transcriptomic analysis of spermatozoa from high- and low-fertile crossbred bulls: implications for fertility prediction. Front Cell Dev Biol. 2021;9:647717. http://doi.org/10.3389/fcell.2021.647717. PMid:34041237.

Rabaglino MB, Le Danvic C, Schibler L, Kupisiewicz K, Perrier JP, O’Meara CM, Kenny DA, Fair S, Lonergan P. Identification of sperm proteins as biomarkers of field fertility in Holstein-Friesian bulls used for artificial insemination. J Dairy Sci. 2022;105(12):10033-46. http://doi.org/10.3168/jds.2022-22273. PMid:36307245.

Raval K, Kumaresan A, Sinha MK, Elango K, Ebenezer Samuel King JP, Nag P, Paul N, Talluri TR, Patil S. Sperm proteomic landscape is altered in breeding bulls with greater sperm DNA fragmentation index. Theriogenology. 2024;216:82-92. http://doi.org/10.1016/j.theriogenology.2023.12.025. PMid:38159388.

Rezende FM, Dietsch GO, Peñagaricano F. Genetic dissection of bull fertility in US Jersey dairy cattle. Anim Genet. 2018;49(5):393-402. http://doi.org/10.1111/age.12710. PMid:30109710.

Ribas-Maynou J, Muiño R, Tamargo C, Yeste M. Cryopreservation of bovine sperm causes single-strand DNA breaks that are localized in the toroidal regions of chromatin. J Anim Sci Biotechnol. 2024;15(1):140. http://doi.org/10.1186/s40104-024-01099-0. PMid:39394604.

Rowe LA, Degtyareva N, Doetsch PW. DNA damage-induced reactive oxygen species (ROS) stress response in Saccharomyces cerevisiae. Free Radic Biol Med. 2008;45(8):1167-77. http://doi.org/10.1016/j.freeradbiomed.2008.07.018. PMid:18708137.

Rudler DL, Hughes LA, Perks KL, Richman TR, Kuznetsova I, Ermer JA, Abudulai LN, Shearwood AMJ, Viola HM, Hool LC, Siira SJ, Rackham O, Filipovska A. Fidelity of translation initiation is required for coordinated respiratory complex assembly. Sci Adv. 2019;5(12):eaay2118. http://doi.org/10.1126/sciadv.aay2118. PMid:31903419.

Selvaraju S, Ramya L, Parthipan S, Swathi D, Binsila BK, Kolte AP. Deciphering the complexity of sperm transcriptome reveals genes governing functional membrane and acrosome integrities potentially influence fertility. Cell Tissue Res. 2021;385(1):207-22. http://doi.org/10.1007/s00441-021-03443-6. PMid:33783607.

Silva PFN, Gadella BM, Colenbrander B, Roelen BAJ. Exposure of bovine sperm to pro-oxidants impairs the developmental competence of the embryo after the first cleavage. Theriogenology. 2007;67(3):609-19. http://doi.org/10.1016/j.theriogenology.2006.09.032. PMid:17056104.

Simon L, Murphy K, Shamsi MB, Liu L, Emery B, Aston KI, Hotaling J, Carrell DT. Paternal influence of sperm DNA integrity on early embryonic development. Hum Reprod. 2014;29(11):2402-12. http://doi.org/10.1093/humrep/deu228. PMid:25205757.

Sosa F, Hansen PJ. Colony stimulating factor 2 protects the preimplantation bovine embryo from heat shock. Zygote. 2023;31(1):51-4. http://doi.org/10.1017/S0967199422000508. PMid:36278319.

Sosa F, Romo S, Kjelland ME, Álvarez-Gallardo H, Pérez-Reynozo S, Urbán-Duarte D, De la Torre-Sánchez JF. Effect of pterostilbene on development, equatorial lipid accumulation and reactive oxygen species production of in vitro-produced bovine embryos. Reprod Domest Anim. 2020;55(11):1490-500. http://doi.org/10.1111/rda.13798. PMid:32767686.

Sosa F, Uh K, Drum JN, Stoecklein KS, Davenport KM, Sofia Ortega M, Lee K, Hansen PJ. Disruption of CSF2RA in the bovine preimplantation embryo reduces development and affects embryonic gene expression in utero. Reprod Fertil. 2023;4(2):e230001. http://doi.org/10.1530/RAF-23-0001. PMid:37000631.

Thundathil J, Meyer R, Palasz AT, Barth AD, Mapletoft RJ. Effect of the knobbed acrosome defect in bovine sperm on IVF and embryo production. Theriogenology. 2000;54(6):921-34. http://doi.org/10.1016/S0093-691X(00)00402-7. PMid:11097045.

Thundathil J, Palasz AT, Barth AD, Mapletoft RJ. Plasma membrane and acrosomal integrity in bovine spermatozoa with the knobbed acrosome defect. Theriogenology. 2002;58(1):87-102. http://doi.org/10.1016/S0093-691X(02)00913-5. PMid:12182368.

Thundathil J, Palasz AT, Barth AD, Mapletoft RJ. The use of in vitro fertilization techniques to investigate the fertilizing ability of bovine sperm with proximal cytoplasmic droplets. Anim Reprod Sci. 2001;65(3-4):181-92. http://doi.org/10.1016/S0378-4320(00)00231-1. PMid:11267798.

Tríbulo P, Siqueira LGB, Oliveira LJ, Scheffler T, Hansen PJ. Identification of potential embryokines in the bovine reproductive tract. J Dairy Sci. 2018;101(1):690-704. http://doi.org/10.3168/jds.2017-13221. PMid:29128220.

Tsunoda S, Kawano N, Miyado K, Kimura N, Fujii J. Impaired fertilizing ability of superoxide dismutase 1-deficient mouse sperm during in vitro fertilization. Biol Reprod. 2012;87(5):121. http://doi.org/10.1095/biolreprod.112.102129. PMid:22933517.

Turner KA, Achinger L, Kong D, Kluczynski DF, Fishman EL, Phillips A, Saltzman B, Loncarek J, Harstine BR, Avidor-Reiss T. Abnormal centriolar biomarker ratios correlate with unexplained bull artificial insemination subfertility: a pilot study. Sci Rep. 2023;13(1):18338. http://doi.org/10.1038/s41598-023-45162-8. PMid:37884598.

Wang Y, Fu X, Li H. Mechanisms of oxidative stress-induced sperm dysfunction. Front Endocrinol (Lausanne). 2025;16:1520835. http://doi.org/10.3389/fendo.2025.1520835. PMid:39974821.

Ward F, Rizos D, Corridan D, Quinn K, Boland M, Lonergan P. Paternal influence on the time of first embryonic cleavage post insemination and the implications for subsequent bovine embryo development in vitro and fertility in vivo. Mol Reprod Dev. 2001;60(1):47-55. http://doi.org/10.1002/mrd.1060. PMid:11550267.

Yan L, Liu J, Wu S, Zhang S, Ji G, Gu A. Seminal superoxide dismutase activity and its relationship with semen quality and SOD gene polymorphism. J Assist Reprod Genet. 2014;31(5):549-54. http://doi.org/10.1007/s10815-014-0215-2. PMid:24658925.

Zheng W-W, Song G, Wang Q-L, Liu S-W, Zhu X-L, Deng S-M, Zhong A, Tan YM, Tan Y. Sperm DNA damage has a negative effect on early embryonic development following in vitro fertilization. Asian J Androl. 2018;20(1):75-9. http://doi.org/10.4103/aja.aja_19_17. PMid:28675153.

Zhu F, Yan P, Zhang J, Cui Y, Zheng M, Cheng Y, Guo Y, Yang X, Guo X, Zhu H. Deficiency of TPPP2, a factor linked to oligoasthenozoospermia, causes subfertility in male mice. J Cell Mol Med. 2019;23(4):2583-94. http://doi.org/10.1111/jcmm.14149. PMid:30680919.

Zou J, Wei L, Li D, Zhang Y, Wang G, Zhang L, Cao P, Yang S, Li G. Effect of glutathione on sperm quality in guanzhong dairy goat sperm during cryopreservation. Front Vet Sci. 2021;8:771440. http://doi.org/10.3389/fvets.2021.771440. PMid:34869742.
 


Submitted date:
05/01/2025

Accepted date:
07/10/2025

68b5a6b8a953952efb44a7e6 animreprod Articles
Links & Downloads

Anim Reprod

Share this page
Page Sections