Animal Reproduction (AR)
https://www.animal-reproduction.org/article/doi/10.1590/1984-3143-AR2025-0047
Animal Reproduction (AR)
Thematic Section: 38th Annual Meeting of the Brazilian Embryo Technology Society (SBTE)

The effects of breeding young bulls and cows in vitro

Marc Andre Sirard

Downloads: 0
Views: 27

Abstract

In the bovine dairy sector, the pursuit of rapid genetic advancement has prompted the adoption of increasingly younger parental figures for both males and females. While physiological limitations and access to gametes impose certain restrictions, the impact of age on gamete quality remains crucial yet poorly understood. We propose that the age effect encompasses environmental factors, which include the metabolic state of the parents and the conditions surrounding gametes and embryos within the reproductive tracts of both sexes. Emerging evidence indicates that this environment significantly influences not only the functionality of gametes and early embryos but also the future phenotype of the offspring. Recent research utilizing transcriptomic and epigenetic molecular analyses in bovine models has demonstrated that the age of both females and males gamete donors, can alter gene expression and programming within the embryo in a similar way that metabolic post partum conditions can. This embryo adaptation to parent’s age is similarly noted in variations related to different culture conditions and the in vitro fertilization (IVF) process. A common outcome from these circumstances is the development of embryos operating in “economy” mode, where translation, cell division, and ATP production are diminished, seemingly as an anticipated adaptation to environmental conditions. Furthermore, new epidemiological studies have shown that these alterations can lead to distinct phenotypes, particularly in animals conceived through IVF, underscoring the long-term consequences that may unfold later in their lives.

Keywords

epigenetic, DNA methylation, gametes, embryos, age

References

Aiken CE, Tarry-Adkins JL, Ozanne SE. Transgenerational effects of maternal diet on metabolic and reproductive ageing. Mamm Genome. 2016;27(7-8):430-9. http://doi.org/10.1007/s00335-016-9631-1. PMid:27114382.

Banos G, Brotherstone S, Coffey MP. Prenatal maternal effects on body condition score, female fertility, and milk yield of dairy cows. J Dairy Sci. 2007;90(7):3490-9. http://doi.org/10.3168/jds.2006-809. PMid:17582133.

Braz CU, Taylor T, Namous H, Townsend J, Crenshaw T, Khatib H. Paternal diet induces transgenerational epigenetic inheritance of DNA methylation signatures and phenotypes in sheep model. PNAS Nexus. 2022;1(2): c040. http://doi.org/10.1093/pnasnexus/pgac040. PMid:36713326.

Cagnone G, Sirard MA. The embryonic stress response to in vitro culture: insight from genomic analysis. Reproduction. 2016;152(6):R247-61. http://doi.org/10.1530/REP-16-0391. PMid:27601713.

Cagnone G, Sirard M-A. The impact of exposure to serum lipids during in vitro culture on the transcriptome of bovine blastocysts. Theriogenology. 2014;81(5):712-22.e3. http://doi.org/10.1016/j.theriogenology.2013.12.005. PMid:24439163.

Calle A, Fernandez-Gonzalez R, Ramos-Ibeas P, Laguna-Barraza R, Perez-Cerezales S, Bermejo-Alvarez P, Ramirez MA, Gutierrez-Adan A. Long-term and transgenerational effects of in vitro culture on mouse embryos. Theriogenology. 2012;77(4):785-93. http://doi.org/10.1016/j.theriogenology.2011.07.016. PMid:21855990.

Chaput C, Sirard MA. Embryonic response to high beta-hydroxybutyrate (BHB) levels in postpartum dairy cows. Domest Anim Endocrinol. 2019;72:106431. http://doi.org/10.1016/j.domaniend.2019.106431. PMid:32325411.

Chen M, Heilbronn LK. The health outcomes of human offspring conceived by assisted reproductive technologies (ART). J Dev Orig Health Dis. 2017;8(4):388-402. http://doi.org/10.1017/S2040174417000228. PMid:28416029.

Jiang Z, Lin J, Dong H, Zheng X, Marjani SL, Duan J, Ouyang Z, Chen J, Tian XC. DNA methylomes of bovine gametes and in vivo produced preimplantation embryos. Biol Reprod. 2018;99(5):949-59. http://doi.org/10.1093/biolre/ioy138. PMid:29912291.

Kaltsas A, Zikopoulos A, Vrachnis D, Skentou C, Symeonidis EN, Dimitriadis F, Stavros S, Chrisofos M, Sofikitis N, Vrachnis N, Zachariou A. Advanced paternal age in focus: unraveling its influence on assisted reproductive technology outcomes. J Clin Med. 2024;13(10):2731. http://doi.org/10.3390/jcm13102731. PMid:38792276.

Khatib H, Townsend J, Konkel MA, Conidi G, Hasselkus JA. Calling the question: what is mammalian transgenerational epigenetic inheritance? Epigenetics. 2024;19(1):2333586. http://doi.org/10.1080/15592294.2024.2333586. PMid:38525788.

Lafontaine S, Cue RI, Sirard MA. Gestational and health outcomes of dairy cows conceived by assisted reproductive technologies compared to artificial insemination. Theriogenology. 2023b;198:282-91. http://doi.org/10.1016/j.theriogenology.2023.01.002. PMid:36634442.

Lafontaine S, Labrecque R, Blondin P, Cue RI, Sirard MA. Comparison of cattle derived from in vitro fertilization, multiple ovulation embryo transfer, and artificial insemination for milk production and fertility traits. J Dairy Sci. 2023a;106(6):4380-96. http://doi.org/10.3168/jds.2022-22736. PMid:37028966.

Lambert S, Blondin P, Vigneault C, Labrecque R, Dufort I, Sirard M-A. Spermatozoa DNA methylation patterns differ due to peripubertal age in bulls. Theriogenology. 2018;106(Suppl C):21-9. http://doi.org/10.1016/j.theriogenology.2017.10.006. PMid:29031946.

Landry DA, Bellefleur A-M, Labrecque R, Grand F-X, Vigneault C, Blondin P, Sirard MA. Effect of cow age on the in vitro developmental competence of oocytes obtained after FSH stimulation and coasting treatments. Theriogenology. 2016;86(5):1240-6. http://doi.org/10.1016/j.theriogenology.2016.04.064. PMid:27215669.

Lane M, Zander-Fox DL, Robker RL, McPherson NO. Peri-conception parental obesity, reproductive health, and transgenerational impacts. Trends Endocrinol Metab. 2015;26(2):84-90. http://doi.org/10.1016/j.tem.2014.11.005. PMid:25523615.

Lismer A, Kimmins S. Emerging evidence that the mammalian sperm epigenome serves as a template for embryo development. Nat Commun. 2023;14(1):2142. http://doi.org/10.1038/s41467-023-37820-2. PMid:37059740.

McJunkin K. Maternal effects of microRNAs in early embryogenesis. RNA Biol. 2018;15(2):165-9. http://doi.org/10.1080/15476286.2017.1402999. PMid:29120257.

Mondou E, Dufort I, Gohin M, Fournier E, Sirard MA. Analysis of microRNAs and their precursors in bovine early embryonic development. Mol Hum Reprod. 2012;18(9):425-34. http://doi.org/10.1093/molehr/gas015. PMid:22491901.

Morin-Doré L, Blondin P, Vigneault C, Grand F-X, Labrecque R, Sirard M-A. Transcriptomic evaluation of bovine blastocysts obtained from peri-pubertal oocyte donors. Theriogenology. 2017;93:111-23. http://doi.org/10.1016/j.theriogenology.2017.01.005. PMid:28257859.

Morin‐Doré L, Blondin P, Vigneault C, Grand FX, Labrecque R, Sirard MA. DNA methylation status of bovine blastocysts obtained from peripubertal oocyte donors. Mol Reprod Dev. 2020;87(8):910-24. http://doi.org/10.1002/mrd.23399. PMid:32677283.

Orozco‐Lucero E, Dufort I, Robert C, Sirard MA. Rapidly cleaving bovine two‐cell embryos have better developmental potential and a distinctive mRNA pattern. Mol Reprod Dev. 2014;81(1):31-41. http://doi.org/10.1002/mrd.22278. PMid:24285591.

Perez MF, Lehner B. Intergenerational and transgenerational epigenetic inheritance in animals. Nat Cell Biol. 2019;21(2):143-51. http://doi.org/10.1038/s41556-018-0242-9. PMid:30602724.

Sharma U, Sun F, Conine CC, Reichholf B, Kukreja S, Herzog VA, Ameres SL, Rando OJ. Small RNAs are trafficked from the epididymis to developing mammalian sperm. Dev Cell. 2018;46(4):481-94.e6. http://doi.org/10.1016/j.devcel.2018.06.023. PMid:30057273.

Siklenka K, Erkek S, Godmann M, Lambrot R, McGraw S, Lafleur C, Cohen T, Xia J, Suderman M, Hallett M, Trasler J, Peters AH, Kimmins S. Disruption of histone methylation in developing sperm impairs offspring health transgenerationally. Science. 2015;350(6261):aab2006. http://doi.org/10.1126/science.aab2006. PMid:26449473.

Siqueira LG, Silva M, Panetto J, Viana J. Consequences of assisted reproductive technologies for offspring function in cattle. Reprod Fertil Dev. 2020;32(2):82-97. http://doi.org/10.1071/RD19278. PMid:32188560.

Siqueira LGB, Dikmen S, Ortega MS, Hansen PJ. Postnatal phenotype of dairy cows is altered by in vitro embryo production using reverse X-sorted semen. J Dairy Sci. 2017;100(7):5899-908. http://doi.org/10.3168/jds.2016-12539. PMid:28456408.

Sirard MA. 40 years of bovine IVF in the new genomic selection context. Reproduction. 2018;156(1):R1-7. http://doi.org/10.1530/REP-18-0008. PMid:29636405.

Smith ZD, Meissner A. DNA methylation: roles in mammalian development. Nat Rev Genet. 2013;14(3):204-20. http://doi.org/10.1038/nrg3354. PMid:23400093.

Takeda K, Kobayashi E, Nishino K, Imai A, Adachi H, Hoshino Y, Iwao K, Akagi S, Kaneda M, Watanabe S. Age-related changes in DNA methylation levels at CpG sites in bull spermatozoa and in vitro fertilization-derived blastocyst-stage embryos revealed by combined bisulfite restriction analysis. J Reprod Dev. 2019;65(4):305-12. http://doi.org/10.1262/jrd.2018-146. PMid:31061296.

Ugur MR, Kutchy NA, Menezes EB, Ul-Husna A, Haynes BP, Uzun A, Kaya A, Topper E, Moura A, Memili E. Retained acetylated histone four in bull sperm associated with fertility. Front Vet Sci. 2019;6:223. http://doi.org/10.3389/fvets.2019.00223. PMid:31417913.

Vargas LN, Zhang Y, Wu C, Martin H, Goulart VA, Plessis C, Sirard MA. Unraveling the role of sperm retained histones in bull fertility and daughter fertility. Theriogenology. 2024;230:299-304. http://doi.org/10.1016/j.theriogenology.2024.09.023. PMid:39366208.

Wang L, Zhang J, Duan J, Gao X, Zhu W, Lu X, Yang L, Zhang J, Li G, Ci W, Li W, Zhou Q, Aluru N, Tang F, He C, Huang X, Liu J. Programming and inheritance of parental DNA methylomes in mammals. Cell. 2014;157(4):979-91. http://doi.org/10.1016/j.cell.2014.04.017. PMid:24813617.

Wei Y, Yang C-R, Wei Y-P, Zhao Z-A, Hou Y, Schatten H, Sun Q-Y. Paternally induced transgenerational inheritance of susceptibility to diabetes in mammals. Proc Natl Acad Sci USA. 2014;111(5):1873-8. http://doi.org/10.1073/pnas.1321195111. PMid:24449870.

Wu C, Blondin P, Vigneault C, Labrecque R, Sirard M-A. The age of the bull influences the transcriptome and epigenome of blastocysts produced by IVF. Theriogenology. 2020a;144:122-31. http://doi.org/10.1016/j.theriogenology.2019.12.020. PMid:31951983.

Wu C, Blondin P, Vigneault C, Labrecque R, Sirard MA. Sperm miRNAs: potential mediators of bull age and early embryo development. BMC Genomics. 2020b;21(1):798. http://doi.org/10.1186/s12864-020-07206-5. PMid:33198638.

Wu F. Learning transferable features from different domains [thesis]. Québec: Université Laval; 2024 [cited 2025 Apr 22]. Available from: https://corpus.ulaval.ca/server/api/core/bitstreams/914a7a3e-a333-4a4c-8001-de76037b0e59/content

Xia W, Xu J, Yu G, Yao G, Xu K, Ma X, Zhang N, Liu B, Li T, Lin Z, Chen X, Li L, Wang Q, Shi D, Shi S, Zhang Y, Song W, Jin H, Hu L, Bu Z, Wang Y, Na J, Xie W, Sun YP. Resetting histone modifications during human parental-to-zygotic transition. Science. 2019;365(6451):353-60. http://doi.org/10.1126/science.aaw5118. PMid:31273069.

Zhang Y, Chaput C, Fournier E, Prunier J, Sirard M-A. Comparing the whole genome methylation landscape of dairy calf blood cells revealed intergenerational inheritance of the maternal metabolism. Epigenetics. 2021;17(7):705-14. http://doi.org/10.1080/15592294.2021.1955188. PMid:34304691.
 


Submitted date:
04/22/2025

Accepted date:
06/06/2025

68964486a9539546493dca72 animreprod Articles
Links & Downloads

Anim Reprod

Share this page
Page Sections