Animal Reproduction (AR)
https://www.animal-reproduction.org/article/doi/10.1590/1984-3143-AR2025-0013
Animal Reproduction (AR)
ORIGINAL ARTICLE

Establishment of a mouse embryo bank at ICTB/FIOCRUZ: vitrification of genetically modified strains

Isabella de Moura Folhadella Pires; Janaína Barcelos Porto Ferreira; Luciene Paschoal Braga Dias; Cristiano Magalhães Ferreira Sobrinho; Alessandra de Almeida Ramos; Paulo César da Silva Souza; Thaís Malheiros Torres; Fabiana Batalha Knackfuss

Downloads: 0
Views: 10

Abstract

To establish a mouse embryo bank at the Institute of Science and Technology in Biomodels, Oswaldo Cruz Foundation (ICTB/FIOCRUZ), embryos from genetically modified strains were vitrified. The strains included B6.129SVEV-CCBP2 (D6), B6.129P2-Nos2 (Nos2), B6.129S2-Cd28 (Cd28), B6.129P2-Ccl3 (Ccl3), B6.129S2-Alox5 (Alox5), B6.129P2-Ccr2 (Ccr2), B6.129P2-Ccr5 (Ccr5) and B6.129S1-Tlr6 (Tlr6). To accomplish this, the animals were superovulated and mated, and their embryos were collected and vitrified. The success of the technique was evaluated by examining the development of the embryos through thawing and in vitro culture, comparing them to a control group. The results were analyzed using percentages, Tukey's t-test, and Analysis of Variance. The embryonic development percentages for the different strains were as follows: D6 (55%), Nos2 (24.7%), Cd28 (45.8%), Ccl3 (50%), Alox5 (4.8%), Ccr2 (66.7%), Ccr5 (63.04%) and Tlr6 (52.8%). Significant differences were observed between the strains Nos2 (p=0.0434), Cd28 (p=0.034), Ccl3 (p=0.0006), and Alox5 (p=0.0166) compared to their respective control groups. In conclusion, the strains Ccr2 (p= p=0.0889), Ccr5 (p=0.0806), D6(p=0,0685) and Tlr6 (p=0.0806) demonstrated favorable results in terms of the vitrification protocol and subsequent embryonic development, as they did not significantly differ from the control groups.

Keywords

mice, vitrification, transgenic, embryos

References

Amorim CA, Curaba M, van Langendonckt A, Dolmans MM, Donnez J. Vitrification as an alternative means of cryopreserving ovarian tissue. Reprod Biomed Online. 2011a;23(2):160-86. http://doi.org/10.1016/j.rbmo.2011.04.005. PMid:21676653.

Amorim CA, David A, Dolmans MM, Camboni A, Donnez J, Van Langendonckt A. Impact of freezing and thawing of human ovarian tissue on follicular growth after long-term xenotransplantation. J Assist Reprod Genet. 2011b;28(12):1157-65. http://doi.org/10.1007/s10815-011-9672-z. PMid:22105186.

Brevini TA, Vassena R, Francisci C, Gandolfi F. Role of adenosine triphosphate, active mitochondria and microtubules in the acquisition of developmental competence of parthenogenetically activated pig oocytes. Biol Reprod. 2005;72(5):1218-23. http://doi.org/10.1095/biolreprod.104.038141. PMid:15659704.

Byers SL, Payson SJ, Taft RA. Performance of ten inbred mouse strains following assisted reproductive technologies (ARTs). Theriogenology. 2006;65(9):1716-26. http://doi.org/10.1016/j.theriogenology.2005.09.016. PMid:16271754.

Camargo ELRA, Magalhães JZ, Fukushima AR, Spinosa HS. Comportamento materno: uma revisão da inter-relação com a toxicologia do desenvolvimento em roedores. Cad Pós-Grad Dist Desenvolv. 2017;17(1):8-25. http://doi.org/10.5935/cadernosdisturbios.v17n1p8-25.

Dinnyés A, Wallace GA, Rall WF. Effect of genotype on the efficiency of mouse embryo cryopreservation by vitrification or slow freezing methods. Mol Reprod Dev. 1995;40(4):429-35. http://doi.org/10.1002/mrd.1080400406. PMid:7598908.

Eichenlaub-Ritter U, Wieczorek M, Lüke S, Seidel T. Age related changes in mitochondrial function and new approaches to study redox regulation in mammalian oocytes in response to age or maturation conditions. Mitochondrion. 2011;11(5):783-96. http://doi.org/10.1016/j.mito.2010.08.011. PMid:20817047.

Gardner DK, Lane M. Mouse molecular embryology. New York: Springer; 2013. Mammalian preimplantation embryo culture; p. 167-82.

Glenister PH, Thornton CE. Cryoconservation: archiving for the future. Mamm Genome. 2000;11(7):565-71. http://doi.org/10.1007/s003350010108. PMid:10886024.

Keefe DL, Niven-Fairchild T, Powell S, Buradagunta S. Mitochondrial deoxyribonucleic acid deletions in oocytes and reproductive aging in women. Fertil Steril. 1995;64(3):577-83. http://doi.org/10.1016/S0015-0282(16)57796-6. PMid:7641914.

Lee HC, Wei YH. Oxidative stress, mitochondrial DNA mutation, and apoptosis in aging. Exp Biol Med (Maywood). 2007;232(5):592-606. PMid:17463155.

Lequarre AS, Vigneron C, Ribaucour F, Holm P, Donnay I, Dalbies-Tran R, Callesen H, Mermillod P. Influence of antral follicle size on oocyte characteristics and embryo development in the bovine. Theriogenology. 2005;63(3):841-59. http://doi.org/10.1016/j.theriogenology.2004.05.015. PMid:15629802.

Lonergan P, Fair T. Maturation of oocytes in vitro. Annu Rev Anim Biosci. 2016;4(1):255-68. http://doi.org/10.1146/annurev-animal-022114-110822. PMid:26566159.

Moussa M, Shu J, Zhang XH, Zeng F. Maternal control of oocyte quality in cattle: a review. Anim Reprod Sci. 2015;155:11-27. http://doi.org/10.1016/j.anireprosci.2015.01.011. PMid:25726438.

Mullen SF, Critser JK. The science of cryobiology. Cancer Treat Res. 2007;138:83-109. http://doi.org/10.1007/978-0-387-72293-1_7. PMid:18080659.

Nagai S, Mabuchi T, Hirata S, Shoda T, Kasai T, Yokota S, Shitara H, Yonekawa H, Hoshi K. Correlation of abnormal mitochondrial distribution in mouse oocytes with reduced developmental competence. Tohoku J Exp Med. 2006;210(2):137-44. http://doi.org/10.1620/tjem.210.137. PMid:17023767.

Onos KD, Rizzo SJS, Howell GR, Sasner M. Toward more predictive genetic mouse models of Alzheimer’s disease. Brain Res Bull. 2016;122:1-11. http://doi.org/10.1016/j.brainresbull.2015.12.003. PMid:26708939.

Ramalho-Santos J, Varum S, Amaral S, Mota PC, Sousa AP, Amaral A. Mitochondrial functionality in reproduction: from gonads and gametes to embryos and embryonic stem cells. Hum Reprod Update. 2009;15(5):553-72. http://doi.org/10.1093/humupd/dmp016. PMid:19414527.

Rizos D, Ward F, Duffy P, Boland MP, Lonergan P. Consequences of bovine oocyte maturation, fertilization or early embryo development in vitro versus in vivo: implications for blastocyst yield and blastocyst quality. Mol Reprod Dev. 2002;61(2):234-48. http://doi.org/10.1002/mrd.1153. PMid:11803560.

Takahashi H, Liu C. Archiving and distributing mouse lines by sperm cryopreservation, IVF, and embryo transfer. Methods Enzymol. 2010;476:53-69. http://doi.org/10.1016/S0076-6879(10)76004-3. PMid:20691860.

The Jackson Laboratory [Internet]. 2018 [cited 2018 Feb 2]. Available from: https://www.jax.org

Tsang WH, Chow KL. Mouse embryo cryopreservation utilizing a novel high-capacity vitrification spatula. Biotech. 2009;46(7):550-2. http://doi.org/10.2144/000113125. PMid:19594455.

van Blerkom J. Mitochondrial function in the human oocyte and embryo and their role in developmental competence. Mitochondrion. 2011;11(5):797-813. http://doi.org/10.1016/j.mito.2010.09.012. PMid:20933103.

Whittingham DG, Leibo SP, Mazur P. Survival of mouse embryos frozen to -196 ºC and -269 ºC. Science. 1972;178(4059):411-4. http://doi.org/10.1126/science.178.4059.411. PMid:5077328.

Wilmut I. The effect of cooling rate, warming rate, cryoprotective agent and stage of development on survival of mouse embryos during freezing and thawing. Life Sci II. 1972;11(22):1071-9. http://doi.org/10.1016/0024-3205(72)90215-9. PMid:4663808.

Zhang X. Cryoprotectant toxicity and osmotic stress in mouse oocyte vitrification. Cryobiology. 2009;59(1):1-8.
 


Submitted date:
02/06/2025

Accepted date:
07/11/2025

690b3a7ca953956c82420bbd animreprod Articles
Links & Downloads

Anim Reprod

Share this page
Page Sections