Animal Reproduction (AR)
https://www.animal-reproduction.org/article/doi/10.1590/1984-3143-AR2024-0130
Animal Reproduction (AR)
REVIEW ARTICLE

The role of the pentose phosphate pathway on reproductive functions

José Victor Braga; Janine de Camargo; Mariana Marques; Rafael Gianella Mondadori; Thomaz Lucia Junior

Downloads: 0
Views: 1

Abstract

The application of assisted reproductive techniques (ART) in both farm animals and humans has faced challenges since its inception. Advances in this field have largely depended on a deeper understanding of the metabolic requirements and molecular dynamics of sperm, oocytes, and embryonic development. Glucose, for instance, is commonly utilized as an energy source in in vitro procedures. The pentose phosphate pathway (PPP), a pathway parallel to glycolysis, plays a key role in redox regulation via NADPH generation and ribose biosynthesis. This review highlights the role of the PPP in reproductive cells and discusses its potential implications for ART procedures.

Keywords

metabolism, oocyte maturation, spermatogenesis, embryo development

References

Alcântara-Neto AS, Cuello C, Uzbekov R, Bauersachs S, Mermillod P, Almiñana C. Oviductal extracellular vesicles enhance porcine in vitro embryo development by modulating the embryonic transcriptome. Biomolecules. 2022;12(9):1300. http://doi.org/10.3390/biom12091300. PMid:36139139.

Alvarez GM, Casiró S, Gutnisky C, Dalvit GC, Sutton-McDowall ML, Thompson JG, Cetica PD. Implications of glycolytic and pentose phosphate pathways on the oxidative status and active mitochondria of the porcine oocyte during IVM. Theriogenology. 2016;86(9):2096-106. http://doi.org/10.1016/j.theriogenology.2015.11.008. PMid:27597631.

Alvarez GM, Ferretti E, Gutnisky C, Dalvit G, Cetica P. Modulation of glycolysis and the pentose phosphate pathway influences porcine oocyte in vitro maturation. Reprod Domest Anim. 2013;48(4):545-53. http://doi.org/10.1111/rda.12123. PMid:23189959.

Bajpai M, Gupta G, Setty B. Changes in carbohydrate metabolism of testicular germ cells during meiosis in the rat. Eur J Endocrinol. 1998;138(3):322-7. http://doi.org/10.1530/eje.0.1380322. PMid:9539308.

Barceló-Fimbres M, Brink Z, Seidel GE Jr. Effects of phenazine ethosulfate during culture of bovine embryos on pregnancy rate, prenatal and postnatal development. Theriogenology. 2009;71(2):355-68. http://doi.org/10.1016/j.theriogenology.2008.08.002. PMid:18801561.

Braga JVC, Bohn AP, Soares LP, Komninou ER, Lucia Júnior T, Vieira AD, Mondadori RG. Docosahexaenoic acid and phenazine ethosulfate are not efficient lipid modulators for porcine in vitro maturation systems. Vet Res Commun. 2022;46(3):731-8. http://doi.org/10.1007/s11259-022-09889-5. PMid:35059961.

Cagnone G, Sirard M-A. The embryonic stress response to in vitro culture: insight from genomic analysis. Reproduction. 2016;152(6):R247-61. http://doi.org/10.1530/REP-16-0391. PMid:27601713.

Cebrian‐Serrano A, Salvador I, García‐Roselló E, Pericuesta E, Pérez‐Cerezales S, Gutierrez‐Adán A, Coy P, Silvestre MA. Effect of the bovine oviductal fluid on in vitro fertilization, development and gene expression of in vitro‐produced bovine blastocysts. Reprod Domest Anim. 2013;48(2):331-8. http://doi.org/10.1111/j.1439-0531.2012.02157.x. PMid:22908847.

Cernilogar FM, Hasenöder S, Wang Z, Scheibner K, Burtscher I, Sterr M, Smialowski P, Groh S, Evenroed IM, Gilfillan GD, Lickert H, Schotta G. Pre-marked chromatin and transcription factor co-binding shape the pioneering activity of Foxa2. Nucleic Acids Res. 2019;47(17):9069-86. http://doi.org/10.1093/nar/gkz627. PMid:31350899.

Chandel NS. Glycolysis. Cold Spring Harb Perspect Biol. 2021;13(5):a040535. http://doi.org/10.1101/cshperspect.a040535. PMid:33941515.

Chelenga M, Sakaguchi K, Kawano K, Furukawa E, Yanagawa Y, Katagiri S, Nagano M. Low oxygen environment and astaxanthin supplementation promote the developmental competence of bovine oocytes derived from early antral follicles during 8 days of in vitro growth in a gas-permeable culture device. Theriogenology. 2022;177:116-26. http://doi.org/10.1016/j.theriogenology.2021.10.014. PMid:34695665.

Chen PR, Redel BK, Kerns KC, Spate LD, Prather RS. Challenges and considerations during in vitro production of porcine embryos. Cells. 2021;10(10):2770. http://doi.org/10.3390/cells10102770. PMid:34685749.

Chen X, Zhao X, Lan F, Zhou T, Cai H, Sun H, Kong W, Kong W. Hydrogen sulphide treatment increases insulin sensitivity and improves oxidant metabolism through the CaMKKbeta-AMPK pathway in PA-induced IR C2C12 cells. Sci Rep. 2017;7(1):13248. http://doi.org/10.1038/s41598-017-13251-0. PMid:29038536.

Christou-Kent M, Dhellemmes M, Lambert E, Ray PF, Arnoult C. Diversity of RNA-binding proteins modulating post-transcriptional regulation of protein expression in the maturing mammalian oocyte. Cells. 2020;9(3):662. http://doi.org/10.3390/cells9030662. PMid:32182827.

De La Torre-Sanchez JF, Gardner DK, Preis K, Gibbons J, Seidel GE Jr. Metabolic regulation of in-vitro-produced bovine embryos. II. Effects of phenazine ethosulfate, sodium azide and 2,4-dinitrophenol during post-compaction development on glucose metabolism and lipid accumulation. Reprod Fertil Dev. 2006;18(5):597-607. http://doi.org/10.1071/RD05064. PMid:16836966.

Donà G, Fiore C, Andrisani A, Ambrosini G, Brunati A, Ragazzi E, Armanini D, Bordin L, Clari G. Evaluation of correct endogenous reactive oxygen species content for human sperm capacitation and involvement of the NADPH oxidase system. Hum Reprod. 2011;26(12):3264-73. http://doi.org/10.1093/humrep/der321. PMid:21940394.

Downs SM, Humpherson PG, Leese HJ. Meiotic induction in cumulus cell-enclosed mouse oocytes: involvement of the pentose phosphate pathway. Biol Reprod. 1998;58(4):1084-94. http://doi.org/10.1095/biolreprod58.4.1084. PMid:9546744.

Downs SM, Humpherson PG, Martin KL, Leese HJ. Glucose utilization during gonadotropin-induced meiotic maturation in cumulus cell-enclosed mouse oocytes. Mol Reprod Dev. 1996;44(1):121-31. http://doi.org/10.1002/(SICI)1098-2795(199605)44:1<121::AID-MRD14>3.0.CO;2-7. PMid:8722700.

Filosa S, Fico A, Paglialunga F, Balestrieri M, Crooke A, Verde P, Abrescia P, Bautista JM, Martini G. Failure to increase glucose consumption through the pentose-phosphate pathway results in the death of glucose-6-phosphate dehydrogenase gene-deleted mouse embryonic stem cells subjected to oxidative stress. Biochem J. 2003;370(3):935-43. http://doi.org/10.1042/bj20021614. PMid:12466018.

Frolova AI, O’neill K, Moley KH. Dehydroepiandrosterone inhibits glucose flux through the pentose phosphate pathway in human and mouse endometrial stromal cells, preventing decidualization and implantation. Mol Endocrinol. 2011;25(8):1444-55. http://doi.org/10.1210/me.2011-0026. PMid:21680659.

Gajda B, Bryła M, Smorag Z. Effects of protein source, vitamin E and phenazine ethosulfate on developmental competence and quality of porcine embryos cultured in vitro. Folia Biol. 2008;56(1-2):57-63. http://doi.org/10.3409/fb56_1-2.57-63. PMid:19055026.

Gomes H, Dias AJB, Moraes J, de Carvalho CSP, Logullo C. Glucose-6-phosphate metabolic preferential destinations in bovine oviduct cells. Acta Sci Vet. 2010;38:377-83.

Gutiérrez-Adán A, Oter M, Martínez-Madrid B, Pintado B, De La Fuente J. Differential expression of two genes located on the X chromosome between male and female in vitro-produced bovine embryos at the blastocyst stage. Mol Reprod Dev. 2000;55(2):146-51. http://doi.org/10.1002/(SICI)1098-2795(200002)55:2<146::AID-MRD3>3.0.CO;2-F. PMid:10618653.

Gutnisky C, Dalvit GC, Thompson JG, Cetica PD. Pentose phosphate pathway activity: effect on in vitro maturation and oxidative status of bovine oocytes. Reprod Fertil Dev. 2014;26(7):931-42. http://doi.org/10.1071/RD12397. PMid:23859479.

Hamdi M, Lopera-Vasquez R, Maillo V, Sanchez-Calabuig MJ, Núnez C, Gutierrez-Adan A, Rizos D. Bovine oviductal and uterine fluid support in vitro embryo development. Reprod Fertil Dev. 2018;30(7):935-45. http://doi.org/10.1071/RD17286. PMid:29167013.

He H, Zhang H, Li Q, Fan J, Pan Y, Zhang T, Robert N, Zhao L, Hu X, Han X, Yang S, Cui Y, Yu S. Low oxygen concentrations improve yak oocyte maturation and enhance the developmental competence of preimplantation embryos. Theriogenology. 2020;156:46-58. http://doi.org/10.1016/j.theriogenology.2020.06.022. PMid:32673901.

Herrick JR, Rajput S, Pasquariello R, Ermisch A, Santiquet N, Schoolcraft WB, Krisher RL. Developmental and molecular response of bovine embryos to reduced nutrients in vitro. Reproduction and Fertility. 2020;1(1):51-65. http://doi.org/10.1530/RAF-20-0033. PMid:35128423.

Hugentobler SA, Humpherson PG, Leese HJ, Sreenan JM, Morris DG. Energy substrates in bovine oviduct and uterine fluid and blood plasma during the oestrous cycle. Mol Reprod Dev. 2008;75(3):496-503. http://doi.org/10.1002/mrd.20760. PMid:17926343.

Jimenez PT, Frolova AI, Chi MM, Grindler NM, Willcockson AR, Reynolds KA, Zhao Q, Moley KH. DHEA-mediated inhibition of the pentose phosphate pathway alters oocyte lipid metabolism in mice. Endocrinology. 2013;154(12):4835-44. http://doi.org/10.1210/en.2012-2140. PMid:24036000.

Johnson GA, Seo H, Bazer FW, Wu G, Kramer AC, McLendon BA, Cain JW. Metabolic pathways utilized by the porcine conceptus, uterus, and placenta. Mol Reprod Dev. 2023;90(7):673-83. http://doi.org/10.1002/mrd.23570. PMid:35460118.

Kim Y, Kim E-Y, Seo Y-M, Yoon TK, Lee W-S, Lee K-A. Function of the pentose phosphate pathway and its key enzyme, transketolase, in the regulation of the meiotic cell cycle in oocytes. Clin Exp Reprod Med. 2012;39(2):58-67. http://doi.org/10.5653/cerm.2012.39.2.58. PMid:22816071.

Kimura K, Spate LD, Green MP, Roberts RM. Effects of oxidative stress and inhibitors of the pentose phosphate pathway on sexually dimorphic production of IFN-τ by bovine blastocysts. Mol Reprod Dev. 2004;68(1):88-95. http://doi.org/10.1002/mrd.20053. PMid:15039952.

Krisher RL, Brad AM, Herrick JR, Sparman ML, Swain JE. A comparative analysis of metabolism and viability in porcine oocytes during in vitro maturation. Anim Reprod Sci. 2007;98(1-2):72-96. http://doi.org/10.1016/j.anireprosci.2006.10.006. PMid:17110061.

Krisher RL, Prather RS. A role for the Warburg effect in preimplantation embryo development: metabolic modification to support rapid cell proliferation. Mol Reprod Dev. 2012;79(5):311-20. http://doi.org/10.1002/mrd.22037. PMid:22431437.

Kurkowska W, Bogacz A, Janiszewska M, Gabryś E, Tiszler M, Bellanti F, Kasperczyk S, Machoń-Grecka A, Dobrakowski M, Kasperczyk A. Oxidative stress is associated with reduced sperm motility in normal semen. Am J Men Health. 2020;14(5):1557988320939731. http://doi.org/10.1177/1557988320939731. PMid:32938274.

Luna C, Serrano E, Domingo J, Casao A, Pérez-Pé R, Cebrián-Pérez JA, Muiño-Blanco T. Expression, cellular localization, and involvement of the pentose phosphate pathway enzymes in the regulation of ram sperm capacitation. Theriogenology. 2016;86(3):704-14. http://doi.org/10.1016/j.theriogenology.2016.02.024. PMid:27063053.

Marin S, Chiang K, Bassilian S, Lee W-NP, Boros LG, Fernández-Novell JM, Centelles JJ, Medrano A, Rodriguez-Gil JE, Cascante M. Metabolic strategy of boar spermatozoa revealed by a metabolomic characterization. FEBS Lett. 2003;554(3):342-6. http://doi.org/10.1016/S0014-5793(03)01185-2. PMid:14623091.

Martin PM, Sutherland AE. Exogenous amino acids regulate trophectoderm differentiation in the mouse blastocyst through an mTOR-dependent pathway. Dev Biol. 2001;240(1):182-93. http://doi.org/10.1006/dbio.2001.0461. PMid:11784055.

Medrano A, Peña A, Rigau T, Rodrìguez-Gil JE. Variations in the proportion of glycolytic/non-glycolytic energy substrates modulate sperm membrane integrity and function in diluted boar samples stored at 15-17°C. Reprod Domest Anim. 2005;40(5):448-53. http://doi.org/10.1111/j.1439-0531.2005.00599.x. PMid:16149951.

Miraglia E, Lussiana C, Viarisio D, Racca C, Cipriani A, Gazzano E, Bosia A, Revelli A, Ghigo D. The pentose phosphate pathway plays an essential role in supporting human sperm capacitation. Fertil Steril. 2010;93(7):2437-40. http://doi.org/10.1016/j.fertnstert.2009.09.005. PMid:19819434.

Mordhorst BR, Murphy SL, Ross RM, Samuel MS, Salazar SR, Ji T, Behura SK, Wells KD, Green JA, Prather RS. Pharmacologic reprogramming designed to induce a warburg effect in porcine fetal fibroblasts alters gene expression and quantities of metabolites from conditioned media without increased cell proliferation. Cell Reprogram. 2018;20(1):38-48. http://doi.org/10.1089/cell.2017.0040. PMid:29412741.

Mun SE, Sim BW, Yoon S, Jeong PS, Yang HJ, Choi SA, Park YH, Kim YH, Kang P, Jeong KJ, Lee Y, Jin YB, Song BS, Kim JS, Huh JW, Lee SR, Choo YK, Kim SU, Chang KT. Dual effect of fetal bovine serum on early development depends on stage-specific reactive oxygen species demands in pigs. PLoS One. 2017;12(4):e0175427. http://doi.org/10.1371/journal.pone.0175427. PMid:28406938.

O’Fallon JV, Wright RW Jr. Quantitative determination of the pentose phosphate pathway in preimplantation mouse embryos. Biol Reprod. 1986;34(1):58-64. http://doi.org/10.1095/biolreprod34.1.58. PMid:3513853.

Pérez-Crespo M, Ramírez MA, Fernández-González R, Rizos D, Lonergan P, Pintado B, Gutiérrez-Adán A. Differential sensitivity of male and female mouse embryos to oxidative induced heat-stress is mediated by glucose-6-phosphate dehydrogenase gene expression. Mol Reprod Dev. 2005;72(4):502-10. http://doi.org/10.1002/mrd.20366. PMid:16149081.

Perl A, Qian Y, Chohan KR, Shirley CR, Amidon W, Banerjee S, Middleton FA, Conkrite KL, Barcza M, Gonchoroff N, Suarez SS, Banki K. Transaldolase is essential for maintenance of the mitochondrial transmembrane potential and fertility of spermatozoa. Proc Natl Acad Sci USA. 2006;103(40):14813-8. http://doi.org/10.1073/pnas.0602678103. PMid:17003133.

Prokai D, Pudasaini A, Kanchwala M, Moehlman AT, Waits AE, Chapman KM, Chaudhary J, Acevedo J, Keller P, Chao X, Carr BR, Hamra FK. Spermatogonial gene networks selectively couple to glutathione and pentose phosphate metabolism but not cysteine biosynthesis. iScience. 2021;24(1):101880. http://doi.org/10.1016/j.isci.2020.101880. PMid:33458605.

Purdy PH, Graham JK, Azevedo HC. Evaluation of boar and bull sperm capacitation and the acrosome reaction using flow cytometry. Anim Reprod Sci. 2022;246:106846. http://doi.org/10.1016/j.anireprosci.2021.106846. PMid:34563407.

Qiu JH, Li YW, Xie HL, Li Q, Dong HB, Sun MJ, Gao WQ, Tan JH. Effects of glucose metabolism pathways on sperm motility and oxidative status during long-term liquid storage of goat semen. Theriogenology. 2016;86(3):839-49. http://doi.org/10.1016/j.theriogenology.2016.03.005. PMid:27061367.

Ramos-Martinez JI. The regulation of the pentose phosphate pathway: remember Krebs. Arch Biochem Biophys. 2017;614:50-2. http://doi.org/10.1016/j.abb.2016.12.012. PMid:28041936.

Redel BK, Brown AN, Spate LD, Whitworth KM, Green JA, Prather RS. Glycolysis in preimplantation development is partially controlled by the Warburg Effect. Mol Reprod Dev. 2012;79(4):262-71. http://doi.org/10.1002/mrd.22017. PMid:22213464.

Redel BK, Tessanne KJ, Spate LD, Murphy CN, Prather RS. Arginine increases development of in vitro-produced porcine embryos and affects the protein arginine methyltransferase–dimethylarginine dimethylaminohydrolase–nitric oxide axis. Reprod Fertil Dev. 2015;27(4):655-66. http://doi.org/10.1071/RD14293. PMid:25765074.

Rieger D, Loskutoff NM, Betteridge KJ. Developmentally related changes in the metabolism of glucose and glutamine by cattle embryos produced and co-cultured in vitro. J Reprod Fertil. 1992;95(2):585-95. http://doi.org/10.1530/jrf.0.0950585. PMid:1518013.

Riganti C, Gazzano E, Polimeni M, Aldieri E, Ghigo D. The pentose phosphate pathway: an antioxidant defense and a crossroad in tumor cell fate. Free Radic Biol Med. 2012;53(3):421-36. http://doi.org/10.1016/j.freeradbiomed.2012.05.006. PMid:22580150.

Rizos D, Ramirez MA, Pintado B, Lonergan P, Gutierrez-Adan A. Culture of bovine embryos in intermediate host oviducts with emphasis on the isolated mouse oviduct. Theriogenology. 2010;73(6):777-85. http://doi.org/10.1016/j.theriogenology.2009.10.001. PMid:19939442.

Rodríguez-Alonso B, Maillo V, Acuña OS, López-Úbeda R, Torrecillas A, Simintiras CA, Sturmey R, Avilés M, Lonergan P, Rizos D. Spatial and pregnancy-related changes in the protein, amino acid, and carbohydrate composition of bovine oviduct fluid. Int J Mol Sci. 2020;21(5):1681. http://doi.org/10.3390/ijms21051681. PMid:32121434.

Rodríguez-Gil JE, Bonet S. Current knowledge on boar sperm metabolism: comparison with other mammalian species. Theriogenology. 2016;85(1):4-11. http://doi.org/10.1016/j.theriogenology.2015.05.005. PMid:26094247.

Rolland AD, Lavigne R, Dauly C, Calvel P, Kervarrec C, Freour T, Evrard B, Rioux-Leclercq N, Auger J, Pineau C. Identification of genital tract markers in the human seminal plasma using an integrative genomics approach. Hum Reprod. 2013;28(1):199-209. http://doi.org/10.1093/humrep/des360. PMid:23024119.

Sato H, Iwata H, Hayashi T, Kimura K, Kuwayama T, Monji Y. The effect of glucose on the progression of the nuclear maturation of pig oocytes. Anim Reprod Sci. 2007;99(3-4):299-305. http://doi.org/10.1016/j.anireprosci.2006.05.008. PMid:16784824.

Satouh Y, Ikawa M. New insights into the molecular events of mammalian fertilization. Trends Biochem Sci. 2018;43(10):818-28. http://doi.org/10.1016/j.tibs.2018.08.006. PMid:30170889.

Shahzad Q, Pu L, Ahmed Wadood A, Waqas M, Xie L, Shekhar Pareek C, Xu H, Liang X, Lu Y. Proteomics analysis reveals that warburg effect along with modification in lipid metabolism improves in vitro embryo development under low oxygen. Int J Mol Sci. 2020;21(6):1996. http://doi.org/10.3390/ijms21061996. PMid:32183390.

Shapiro BM. The control of oxidant stress at fertilization. Science. 1991;252(5005):533-6. http://doi.org/10.1126/science.1850548. PMid:1850548.

Stanton RC. Glucose‐6‐phosphate dehydrogenase, NADPH, and cell survival. IUBMB Life. 2012;64(5):362-9. http://doi.org/10.1002/iub.1017. PMid:22431005.

Stincone A, Prigione A, Cramer T, Wamelink MMC, Campbell K, Cheung E, Olin-Sandoval V, Grüning NM, Krüger A, Tauqeer Alam M, Keller MA, Breitenbach M, Brindle KM, Rabinowitz JD, Ralser M. The return of metabolism: biochemistry and physiology of the pentose phosphate pathway. Biol Rev Camb Philos Soc. 2015;90(3):927-63. http://doi.org/10.1111/brv.12140. PMid:25243985.

Sudano MJ, Paschoal DM, Rascado TS, Magalhães LCO, Crocomo LF, de Lima-Neto JF, da Cruz Landim-Alvarenga F. Lipid content and apoptosis of in vitro-produced bovine embryos as determinants of susceptibility to vitrification. Theriogenology. 2011;75(7):1211-20. http://doi.org/10.1016/j.theriogenology.2010.11.033. PMid:21247620.

Urner F, Sakkas D. A possible role for the pentose phosphate pathway of spermatozoa in gamete fusion in the mouse. Biol Reprod. 1999a;60(3):733-9. http://doi.org/10.1095/biolreprod60.3.733. PMid:10026124.

Urner F, Sakkas D. Characterization of glycolysis and pentose phosphate pathway activity during sperm entry into the mouse oocyte. Biol Reprod. 1999b;60(4):973-8. http://doi.org/10.1095/biolreprod60.4.973. PMid:10084974.

Urner F, Sakkas D. Involvement of the pentose phosphate pathway and redox regulation in fertilization in the mouse. Mol Reprod Dev. 2005;70(4):494-503. http://doi.org/10.1002/mrd.20222. PMid:15685628.

Warburg O. On the origin of cancer cells. Science. 1956;123(3191):309-14. http://doi.org/10.1126/science.123.3191.309. PMid:13298683.

Xu ZP, Wawrousek EF, Piatigorsky J. Transketolase haploinsufficiency reduces adipose tissue and female fertility in mice. Mol Cell Biol. 2002;22(17):6142-7. http://doi.org/10.1128/MCB.22.17.6142-6147.2002. PMid:12167708.

Zamfirescu RC, Day ML, Morris MB. MTORC1/2 signaling is downregulated by amino acid-free culture of mouse preimplantation embryos and is only partially restored by amino acid readdition. Am J Physiol Cell Physiol. 2021;320(1):C30-44. http://doi.org/10.1152/ajpcell.00385.2020. PMid:33052068.

Zhai Y, Yu H, An X, Zhang Z, Zhang M, Zhang S, Li Q, Li Z. Profiling the transcriptomic signatures and identifying the patterns of zygotic genome activation – a comparative analysis between early porcine embryos and their counterparts in other three mammalian species. BMC Genomics. 2022;23(1):772. http://doi.org/10.1186/s12864-022-09015-4. PMid:36434523.

Zheng P, Vassena R, Latham KE. Effects of in vitro oocyte maturation and embryo culture on the expression of glucose transporters, glucose metabolism and insulin signaling genes in rhesus monkey oocytes and preimplantation embryos. Mol Hum Reprod. 2007;13(6):361-71. http://doi.org/10.1093/molehr/gam014. PMid:17416905.

Zhu Z, Umehara T, Tsujita N, Kawai T, Goto M, Cheng B, Zeng W, Shimada M. Itaconate regulates the glycolysis/pentose phosphate pathway transition to maintain boar sperm linear motility by regulating redox homeostasis. Free Radic Biol Med. 2020;159:44-53. http://doi.org/10.1016/j.freeradbiomed.2020.07.008. PMid:32745767.

Zhu Z, Zhang W, Li R, Zeng W. Reducing the glucose level in pre-treatment solution improves post-thaw boar sperm quality. Front Vet Sci. 2022;9:856536. http://doi.org/10.3389/fvets.2022.856536. PMid:35433908.
 


Submitted date:
11/14/2024

Accepted date:
06/23/2025

68ed2c80a953955a862752d4 animreprod Articles
Links & Downloads

Anim Reprod

Share this page
Page Sections