Animal Reproduction (AR)
https://www.animal-reproduction.org/article/doi/10.1590/1984-3143-AR2023-0049
Animal Reproduction (AR)
Thematic Section: 39th Annual Meeting of the Association of Embryo Technology in Europe (AETE)

Lab partners: oocytes, embryos and company. A personal view on aspects of oocyte maturation and the development of monozygotic twins

Burkhard Meinecke; Sabine Meinecke-Tillmann

Downloads: 0
Views: 489

Abstract

The present review addresses the oocyte and the preimplantation embryo, and is intended to highlight the underlying principle of the “nature versus/and nurture” question. Given the diversity in mammalian oocyte maturation, this review will not be comprehensive but instead will focus on the porcine oocyte. Historically, oogenesis was seen as the development of a passive cell nursed and determined by its somatic compartment. Currently, the advanced analysis of the cross-talk between the maternal environment and the oocyte shows a more balanced relationship: Granulosa cells nurse the oocyte, whereas the latter secretes diffusible factors that regulate proliferation and differentiation of the granulosa cells. Signal molecules of the granulosa cells either prevent the precocious initiation of meiotic maturation or enable oocyte maturation following hormonal stimulation. A similar question emerges in research on monozygotic twins or multiples: In Greek and medieval times, twins were not seen as the result of the common course of nature but were classified as faults. This seems still valid today for the rare and until now mainly unknown genesis of facultative monozygotic twins in mammals. Monozygotic twins are unique subjects for studies of the conceptus-maternal dialogue, the intra-pair similarity and dissimilarity, and the elucidation of the interplay between nature and nurture. In the course of in vivo collections of preimplantation sheep embryos and experiments on embryo splitting and other microsurgical interventions we recorded observations on double blastocysts within a single zona pellucida, double inner cell masses in zona-enclosed blastocysts and double germinal discs in elongating embryos. On the basis of these observations we add some pieces to the puzzle of the post-zygotic genesis of monozygotic twins and on maternal influences on the developing conceptus.

Keywords

oocyte maturation, soma-germ interactions, monozygotic twins, demi-embryos, maternal effects

References

Abecia JA, Palacios C. Ewes giving birth to female lambs produce more milk than ewes giving birth to male lambs. Ital J Anim Sci. 2018;17(3):736-9. http://dx.doi.org/10.1080/1828051X.2017.1415705.

Adaniya GK, Rawlins RG, Miller IF, Zaneveld LJ. Effect of sodium alginate encapsulation on the development of preimplantation mouse embryos. J In Vitro Fert Embryo Transf. 1987;4(6):343-5. http://dx.doi.org/10.1007/BF01555383. PMid:3437220.

Aguila L, Osycka-Salut C, Treulen F, Felmer R. Pluripotent core in bovine embryos: a review. Animals. 2022;12(8):1010. http://dx.doi.org/10.3390/ani12081010. PMid:35454256.

Ahmad I, Chafe UM, Umar AA, Salisu MD. Conjoined twins in Red Sokoto goat. J Hell Vet Med Soc. 2020;70(4):1919-24. http://dx.doi.org/10.12681/jhvms.22245.

Ai J, Jin L, Zheng Y, Yang P, Huang B, Dong X. The morphology of inner cell mass is the strongest predictor of live birth after a frozen-thawed single embryo transfer. Front Endocrinol. 2021;12:621221. http://dx.doi.org/10.3389/fendo.2021.621221. PMid:33716973.

Ainsworth L, Tsang BK, Downey BR, Marcus GJ, Armstrong DT. Interrelationships between follicular fluid steroid levels, gonadotropic stimuli, and oocyte maturation during preovulatory development of porcine follicles. Biol Reprod. 1980;23(3):621-7. http://dx.doi.org/10.1095/biolreprod23.3.621. PMid:7448265.

Alikani M, Calderon G, Tomkin G, Garrisi J, Kokot M, Cohen J. Cleavage anomalies in early human embryos and survival after prolonged culture in-vitro. Hum Reprod. 2000;15(12):2634-43. http://dx.doi.org/10.1093/humrep/15.12.2634. PMid:11098037.

Allen WR, Pashen RL. Production of monozygotic (identical) horse twins by embryo micromanipulation. J Reprod Fertil. 1984;71(2):607-13. http://dx.doi.org/10.1530/jrf.0.0710607. PMid:6747968.

Allen WR, Skidmore JA, Stewart F, Antczak DF. Effects of fetal genotype and uterine environment on placental development in equids. J Reprod Fertil. 1993;98(1):55-60. http://dx.doi.org/10.1530/jrf.0.0980055. PMid:8345479.

Allen WR, Wilsher S, Tiplady C, Butterfield RM. The influence of maternal size on pre- and postnatal growth in the horse: III postnatal growth. Reproduction. 2004;127(1):67-77. http://dx.doi.org/10.1530/rep.1.00024. PMid:15056771.

Allen WR, Wilsher S, Turnbull C, Stewart F, Ousey J, Rossdale PD, Fowden A. Influence of maternal size on placental, fetal and postnatal growth in the horse: I development in utero. Reproduction. 2002;123(3):445-53. http://dx.doi.org/10.1530/rep.0.1230445. PMid:11882022.

Allen WR. The development and application of the modern reproductive technologies to horse breeding. Reprod Domest Anim. 2005;40(4):310-29. http://dx.doi.org/10.1111/j.1439-0531.2005.00602.x. PMid:16008761.

Alteri A, Viganò P, Maizar AA, Jovine L, Giacomini E, Rubino P. Revisiting embryo assisted hatching approaches: a systematic review of the current protocols. J Assist Reprod Genet. 2018;35(3):367-91. http://dx.doi.org/10.1007/s10815-018-1118-4. PMid:29350315.

Anderson GB, Bradford GE, Cupps PT. Length of gestation in ewes carrying lambs of two different breeds. Theriogenology. 1981;16(1):119-29. http://dx.doi.org/10.1016/0093-691X(81)90120-5. PMid:16725626.

Asami M, Lam YHB, Ma MK, Rainbow K, Braun S, VerMilyea MD, Yeo GS, Perry ACF. Human embryonic genome activation initiates at the one-cell stage. Cell Stem Cell. 2022;29(2):209-16.e4. http://dx.doi.org/10.1016/j.stem.2021.11.012. PMid:34936886.

Ashworth CJ, Ross AW, Barrett P. The use of DNA fingerprinting to assess monozygotic twinning in Meishan and Landrace × Large White pigs. Reprod Fertil Dev. 1998;10(6):487-90. http://dx.doi.org/10.1071/RD99010. PMid:10588379.

Assheton R. An account of a blastodermic vesicle of the sheep of the seventh day, with twin germinal areas. J Anat Physiol. 1898;32(Pt 3):362-72.2. PMid:17232315.

Bagg MA, Nottle MB, Armstrong DT, Grupen CG. Relationship between follicle size and oocyte developmental competence in prepubertal and adult pigs. Reprod Fertil Dev. 2007;19(7):797-803. http://dx.doi.org/10.1071/RD07018. PMid:17897582.

Bagg MA, Vassena R, Papasso-Brambilla E, Grupen CG, Armstrong DT, Gandolfi F. Changes in ovarian, follicular, and oocyte morphology immediately after the onset of puberty are not accompanied by an increase in oocyte developmental competence in the pig. Theriogenology. 2004;62(6):1003-11. http://dx.doi.org/10.1016/j.theriogenology.2003.12.028. PMid:15289043.

Balakier H, Cabaca O, Bouman D, Shewchuk AB, Laskin C, Squire JA. Spontaneous blastomere fusion after freezing and thawing of early human embryos leads to polyploidy and chromosomal mosaicism. Hum Reprod. 2000;15(11):2404-10. http://dx.doi.org/10.1093/humrep/15.11.2404. PMid:11056142.

Barberet J, Ducreux B, Guilleman M, Simon E, Bruno C, Fauque P. DNA methylation profiles after ART during human lifespan: a systematic review and meta-analysis. Hum Reprod Update. 2022;28(5):629-55. http://dx.doi.org/10.1093/humupd/dmac010. PMid:35259267.

Berg DK, Smith CS, Pearton DJ, Wells DN, Broadhurst R, Donnison M, Pfeffer PL. Trophectoderm lineage determination in cattle. Dev Cell. 2011;20(2):244-55. http://dx.doi.org/10.1016/j.devcel.2011.01.003. PMid:21316591.

Betteridge KJ, editor. Embryo transfer in farm animals: a review of techniques and applications. Monograph no. 16. Ottawa: Agriculture Canada/Health of Animals Branch; 1977.

Betteridge KJ. An historical look at embryo transfer. J Reprod Fertil. 1981;62(1):1-13. http://dx.doi.org/10.1530/jrf.0.0620001. PMid:7014855.

Bi C, Wen D, Xu Y, Sun Q, Chen D. Replacement of inner cell mass in mouse. Chin Sci Bull. 2003;48(13):1347-51. http://dx.doi.org/10.1007/BF03184177.

Biggers JD. IVF and embryo transfer: historical origin and development. Reprod Biomed Online. 2012;25(2):118-27. http://dx.doi.org/10.1016/j.rbmo.2012.04.011. PMid:22695311.

Biggers JD. The potential use of artificially produced monozygotic twins for comparative experiments. Theriogenology. 1986;26(1):1-25. http://dx.doi.org/10.1016/0093-691X(86)90108-1. PMid:16726166.

Bindon BM. Systematic study of preimplantation stages of pregnancy in the sheep. Aust J Biol Sci. 1971;24(1):131-47. http://dx.doi.org/10.1071/BI9710131. PMid:5553665.

Bjerre D, Thorup F, Jørgensen CB, Vejlsted M, Fredholm M. A study of the occurrence of monochorionic and monozygotic twinning in the pig. Anim Genet. 2009;40(1):53-6. http://dx.doi.org/10.1111/j.1365-2052.2008.01801.x. PMid:19016673.

Bjerregaard B, Wrenzycki C, Philimonenko VV, Hozak P, Laurincik J, Niemann H, Motlik J, Maddox-Hyttel P. Regulation of ribosomal RNA synthesis during the final phases of porcine oocyte growth. Biol Reprod. 2004;70(4):925-35. http://dx.doi.org/10.1095/biolreprod.103.020941. PMid:14627545.

Blakewood EG, Jaynes HM, Johnson WA, Godke RA. Using the amniotic cavity of the developing chick embryo for the in vivo culture of early-stage mammalian embryos. Poult Sci. 1989;68(12):1695-702. http://dx.doi.org/10.3382/ps.0681695. PMid:2622823.

Blickstein I, Jones C, Keith LG. Zygotic-splitting rates after single-embryo transfers in in vitro fertilization. N Engl J Med. 2003;348(23):2366-7. http://dx.doi.org/10.1056/NEJMc026724. PMid:12789011.

Blickstein I, Verhoeven HC, Keith LG. Zygotic splitting after assisted reproduction. N Engl J Med. 1999;340(9):738-9. http://dx.doi.org/10.1056/NEJM199903043400916. PMid:10068338.

Boklage CE. On the timing of monozygotic twinning events. In: Gedda L, Parisi P, Nance WE, editors. Twin research 3: twin biology and multiple pregnancy. New York: Alan R. Liss; 1981. p. 155-65.

Boland MJ, Hazen JL, Nazor KL, Rodriguez AR, Gifford W, Martin G, Kupriyanov S, Baldwin KK. Adult mice generated from induced pluripotent stem cells. Nature. 2009;461(7260):91-4. http://dx.doi.org/10.1038/nature08310. PMid:19672243.

Boland MJ, Hazen JL, Nazor KL, Rodriguez AR, Martin G, Kupriyanov S, Baldwin KK. Generation of mice derived from induced pluripotent stem cells. J Vis Exp. 2012;69(69):e4003. PMid:23222420.

Bolton RL, Mooney A, Pettit MT, Bolton AE, Morgan L, Drake GJ, Appeltant R, Walker SL, Gillis JD, Hvilsom C. Resurrecting biodiversity: advanced assisted reproductive technologies and biobanking. Reprod Fertil. 2022;3(3):R121-46. http://dx.doi.org/10.1530/RAF-22-0005. PMid:35928671.

Bomsel-Helmreich O, Papiernik-Berkhauer E. Delayed ovulation and monozygotic twinning. Acta Genet Med Gemellol. 1976;25(1):73-6. http://dx.doi.org/10.1017/S000156600001388X. PMid:1031545.

Bomsel-Helmreich O. Delayed ovulation and monozygotic twinning in the rabbit. Acta Genet Med Gemellol. 1974;23(Suppl 2):19. http://dx.doi.org/10.1017/S1120962300022538.

Brouillet S, Mereuze S, Ranisavljevic N, Chauveau C, Hamamah S, Cattin J, Verebi C, Cabrol C, Ishmukhametova A, Girardet A, Anahory T, Willems M. Molecular characterization of a rare case of monozygotic dichorionic diamniotic twin pregnancy after single blastocyst transfer in preimplantation genetic testing (PGT). Int J Mol Sci. 2022;23(18):10835. http://dx.doi.org/10.3390/ijms231810835. PMid:36142745.

Brumby PJ. The influence of the maternal environment on growth in mice. Heredity. 1960;14(1-2):1-18. http://dx.doi.org/10.1038/hdy.1960.1.

Bulmer MG. The biology of twinning in man. Oxford: Clarendon Press;1970.

Carstea BV, Lemos APC, Ilie ED, Varga L, Bodó S, Kovács A, Bösze Z, Gócza E. Production of identical mouse twins and a triplet with predicted gender. Cloning Stem Cells. 2007;9(2):247-56. http://dx.doi.org/10.1089/clo.2006.0055. PMid:17579557.

Casser E, Israel S, Boiani M. Multiplying embryos: experimental monozygotic polyembryony in mammals and its uses. Int J Dev Biol. 2019a;63(3-4-5):143-55. http://dx.doi.org/10.1387/ijdb.190016mb. PMid:31058293.

Casser E, Wdowik S, Israel S, Witten A, Schlatt S, Nordhoff V, Boiani M. Differences in blastomere totipotency in 2-cell mouse embryos are a maternal trait mediated by asymmetric mRNA distribution. Mol Hum Reprod. 2019b;25(11):729-44. http://dx.doi.org/10.1093/molehr/gaz051. PMid:31504820.

Chan CJ, Costanzo M, Ruiz-Herrero T, Mönke G, Petrie RJ, Bergert M, Diz-Muñoz A, Mahadevan L, Hiiragi T. Hydraulic control of mammalian embryo size and cell fate. Nature. 2019;571(7763):112-6. http://dx.doi.org/10.1038/s41586-019-1309-x. PMid:31189957.

Chen PR, Redel BK, Kerns KC, Spate LD, Prather RS. Challenges and considerations during in vitro production of porcine embryos. Cells. 2021;10(10):2770. http://dx.doi.org/10.3390/cells10102770. PMid:34685749.

Chen Z, Liu Z, Huang J, Amano T, Li C, Cao S, Wu C, Liu B, Zhou L, Carter MG, Keefe DL, Yang X, Liu L. Birth of parthenote mice directly from parthenogenetic embryonic stem cells. Stem Cells. 2009;27(9):2136-45. http://dx.doi.org/10.1002/stem.158. PMid:19544532.

Chida S. Monozygous double inner cell masses in mouse blastocysts following fertilization in vitro and in vivo. J In Vitro Fert Embryo Transf. 1990;7(3):177-9. http://dx.doi.org/10.1007/BF01135685. PMid:2380625.

Chitnis S, Derom C, Vlietinck R, Derom R, Monteiro J, Gregersen PK. X chromosome-inactivation patterns confirm the late timing of monoamniotic-MZ twinning. Am J Hum Genet. 1999;65(2):570-1. http://dx.doi.org/10.1086/302502. PMid:10417301.

Choi J, Smitz J. Luteinizing hormone and human chorionic gonadotropin: origins and difference. Mol Cell Endocrinol. 2014;383(1-2):203-13. http://dx.doi.org/10.1016/j.mce.2013.12.009. PMid:24365330.

Christmann L, Jung T, Moor RM. MPF components and meiotic competence in growing pig oocytes. Mol Reprod Dev. 1994;38(1):85-90. http://dx.doi.org/10.1002/mrd.1080380114. PMid:8049069.

Chu CS, Li D, Olson-Chen C, Kawwass J, Vitek W. Recurrence risk and risk factors for monozygotic twin and triplet birth in over 65,000 single-embryo transfers. J Assist Reprod Genet. 2023;40(4):851-5. http://dx.doi.org/10.1007/s10815-023-02737-8. PMid:36746891.

Corner GW. The observed embryology of human single-ovum twins and other multiple births. Am J Obstet Gynecol. 1955;70(5):933-51. http://dx.doi.org/10.1016/0002-9378(55)90001-6. PMid:13258680.

Cosby NC, Dukelow WR. Microencapsulation of single, multiple, and zona pellucida-free mouse preimplantation embryos in sodium alginate and their development in vitro. J Reprod Fertil. 1990;90(1):19-24. http://dx.doi.org/10.1530/jrf.0.0900019. PMid:2231540.

Costa ALE, Abdelmassih S, Oliveira FG, Abdelmassih V, Abdelmassih R, Nagy ZP, Balmaceda JP. Monozygotic twins and transfer at the blastocyst stage after ICSI. Hum Reprod. 2001;16(2):333-6. http://dx.doi.org/10.1093/humrep/16.2.333. PMid:11157829.

Cowley DE, Pomp D, Atchley WR, Eisen EJ, Hawkins-Brown D. The impact of maternal uterine genotype on postnatal growth and adult body size in mice. Genetics. 1989;122(1):193-203. http://dx.doi.org/10.1093/genetics/122.1.193. PMid:2731729.

Coy P, Grullon L, Canovas S, Romar R, Matas C, Aviles M. Hardening of the zona pellucida of unfertilized eggs can reduce polyspermic fertilization in the pig and cow. Reproduction. 2008;135(1):19-27. http://dx.doi.org/10.1530/REP-07-0280. PMid:18159080.

Crozet N, Motlik J, Szollosi D. Nucleolar fine structure and RNA synthesis in porcine oocytes during early stages of antrum formation. Biol Cell. 1981;41:35-42.

Curnow EC, Gunn LM, Trounson AO. Electrofusion of 2-cell bovine embryos for the production of tetraploid blastocysts in vitro. Mol Reprod Dev. 2000;56(3):372-7. http://dx.doi.org/10.1002/1098-2795(200007)56:3<372::AID-MRD7>3.0.CO;2-W. PMid:10862004.

Daguet MC. Increase of follicle cell LH binding and changes in the LH level of follicular fluid during the preovulatory period in the sow. Ann Biol Anim Biochim Biophys. 1979;19(6):1655-67. http://dx.doi.org/10.1051/rnd:19791003.

Dalbies-Tran R, Cadoret V, Desmarchais A, Elis S, Maillard V, Monget P, Monniaux D, Reynaud K, Saint-Dizier M, Uzbekova S. A comparative analysis of oocyte development in mammals. Cells. 2020;9(4):1002. http://dx.doi.org/10.3390/cells9041002. PMid:32316494.

Dallagiovanna C, Vanni VS, Somigliana E, Busnelli A, Papaleo E, Villanacci R, Candiani M, Reschini M. Risk factors for monozygotic twins in IVF-ICSI cycles: a case-control study. Reprod Sci. 2021;28(5):1421-7. http://dx.doi.org/10.1007/s43032-020-00406-0. PMid:33258063.

Dang-Nguyen TQ, Kaneda M, Somfai T, Haraguchi S, Matsukawa K, Akagi S, Kikuchi K, Nakai M, Nguyen BX, Tajima A, Kanai Y, Nagai T. Development of single blastomeres derived from two-cell embryos produced in vitro in pigs. Theriogenology. 2011;76(1):88-96. http://dx.doi.org/10.1016/j.theriogenology.2011.01.021. PMid:21396700.

Dean WL, Rossant J. Effect of delaying DNA replication on blastocyst formation in the mouse. Differentiation. 1984;26(1-3):134-7. http://dx.doi.org/10.1111/j.1432-0436.1984.tb01386.x. PMid:6428955.

Denicol AC, Dobbs KB, McLean KM, Carambula SF, Loureiro B, Hansen PJ. Canonical WNT signaling regulates development of bovine embryos to the blastocyst stage. Sci Rep. 2013;3(1):1266. http://dx.doi.org/10.1038/srep01266. PMid:23405280.

Denker HW. Recent embryo twinning data prompt reconsideration of theories on a crucial role of segregation of oocyte cytoplasmic constituents in mammals. Mol Hum Reprod. 2020;26(3):193-8. http://dx.doi.org/10.1093/molehr/gaaa005. PMid:31977027.

Dennis SM. Embryonic duplications in sheep. Aust Vet J. 1975;51(2):83-7. http://dx.doi.org/10.1111/j.1751-0813.1975.tb09411.x. PMid:1172431.

Derom R, Derom C, Vlietinck R. Placentation. In: Keith LG, Papiernik E, Keith DM, Luke B, editors. Multiple pregnancy. New York: Parthenon Publishing Group; 1995. p. 113-28.

Dijkstra A, Cuervo‐Arango J, Stout TAE, Claes A. Monozygotic multiple pregnancies after transfer of single in vitro produced equine embryos. Equine Vet J. 2020;52(2):258-61. http://dx.doi.org/10.1111/evj.13146. PMid:31232484.

Dumortier JG, Verge-Serandour M, Tortorelli AF, Mielke A, Plater L, Turlier H, Maître JL. Hydraulic fracturing and active coarsening position the lumen of the mouse blastocyst. Science. 2019;365(6452):465-8. http://dx.doi.org/10.1126/science.aaw7709. PMid:31371608.

Dunphy WG, Newport JW. Unraveling of mitotic control mechanisms. Cell. 1988;55(6):925-8. http://dx.doi.org/10.1016/0092-8674(88)90234-6. PMid:3060263.

Ebeling S, Labudda A, Meinecke B. In vitro aging of porcine oocytes: changes in phosphorylation of the mitogen-activated protein kinase (MAPK) and parthenogenetic activability. Reprod Domest Anim. 2010;45(6):e398-404. http://dx.doi.org/10.1111/j.1439-0531.2010.01588.x. PMid:20210885.

Ebeling S, Schuon C, Meinecke B. Mitogen-activated protein kinase phosphorylation patterns in pig oocytes and cumulus cells during gonadotropin-induced resumption of meiosis in vitro. Zygote. 2007;15(2):139-47. http://dx.doi.org/10.1017/S0967199406004011. PMid:17462106.

Ebeling S, Töpfer D, Meinecke B. Steroidogenesis and the influence of MAPK activity during in vitro maturation of porcine cumulus oocyte complexes. Reprod Domest Anim. 2011;46(3):513-9. http://dx.doi.org/10.1111/j.1439-0531.2010.01699.x. PMid:20946537.

Edwards RG. Maturation in vitro of mouse, sheep, cow, pig, rhesus monkey and human ovarian oocytes. Nature. 1965;208(5008):349-51. http://dx.doi.org/10.1038/208349a0. PMid:4957259.

Egbert JR, Shuhaibar LC, Edmund AB, Van Helden DA, Robinson JW, Uliasz TF, Baena V, Geerts A, Wunder F, Potter LR, Jaffe LA. Dephosphorylation and inactivation of NPR2 gyanylyl cyclase in granulosa cells contributes to the LH-induced decrease in cGMP that causes resumption of meiosis in rat oocytes. Development. 2014;141(18):3594-604. http://dx.doi.org/10.1242/dev.112219. PMid:25183874.

Egbert JR, Uliasz TF, Shuhaibar LC, Geerts A, Wunder F, Kleiman RJ, Humphrey JM, Lampe PD, Artemyev NO, Rybalkin SD, Beavo JA, Movsesian MA, Jaffe LA. Luteinizing hormone causes phosphorylation and activation of the cGMP phosphodiesterase PDE5 in rat ovarian follicles, contributing, together with PDE1 activity, to the resumption of meiosis. Biol Reprod. 2016;94(5):110. http://dx.doi.org/10.1095/biolreprod.115.135897. PMid:27009040.

Eiler H, Nalbandov AV. Sex steroids in follicular fluid and blood plasma during the estrous cycle of pigs. Endocrinology. 1977;100(2):331-8. http://dx.doi.org/10.1210/endo-100-2-331. PMid:556689.

Elmetwally M, Rohn K, Meinecke-Tillmann S. Noninvasive color Doppler sonography of uterine blood flow throughout pregnancy in sheep and goats. Theriogenology. 2016a;85(6):1070-9.e1. http://dx.doi.org/10.1016/j.theriogenology.2015.11.018. PMid:26768538.

Elmetwally MA, Rohn K, Meinecke-Tillmann S. Doppler sonography is a useful method to assess the effects of maternal anxiety on intrauterine fetal growth in pregnant sheep and goats. Qual Prim Care. 2016b;24:137-45.

Emsen E, Diaz CAG, Yaprak M, Koycegiz F, Kutluca M, Emsen H. Effect of inter-breed embryo transfer on lamb growing performance and survival. Reprod Domest Anim. 2012;47(1):8-11. http://dx.doi.org/10.1111/j.1439-0531.2008.01200.x. PMid:19144018.

Enders AC. Implantation in the nine-banded armadillo: how does a single blastocyst form four embryos? Placenta. 2002;23(1):71-85. http://dx.doi.org/10.1053/plac.2001.0753. PMid:11869094.

Fan W, Huang T, Wu T, Bai H, Kawahara M, Takahashi M. Zona pellucida removal by acid Tyrode’s solution affects pre- and post-implantation development and gene expression in mouse embryos. Biol Reprod. 2022;107(5):1228-41. http://dx.doi.org/10.1093/biolre/ioac155. PMid:35948000.

Fehilly CB, Willadsen SM. Embryo manipulation in farm animals. Oxf Rev Reprod Biol. 1986;8:379-413. PMid:3540807.

Feltrin C, Cooper CA, Mohamad-Fauzi N, Rodrigues V, Aguiar LH, Gaudencio-Neto S, Martins LT, Calderón C, Morais AS, Carneiro IS, Almeida TM, Silva I, Rodrigues JL, Maga EA, Murray JD, Libório AB, Bertolini LR, Bertolini M. Systemic immunosuppression by methylprednisolone and pregnancy rates in goats undergoing the transfer of cloned embryos. Reprod Domest Anim. 2014;49(4):648-56. http://dx.doi.org/10.1111/rda.12342. PMid:24943879.

Fernandez M. Beitrag zur Embryologie der Gürteltiere. I. Zur Keimblätterinversion und spezifischen Polyembryonie der Mulita (Tatusia hybrida). Gegenbaurs Morphologisches Jahrbuch; eine Zeitschrift für Anatomie und Entwicklungsgeschichte. 1909;39:302-33. German.

Fernández M. Die Entwicklung der Mulita. Rev Museo de la Plata. 1915;21:1-519. German.

Firmin J, Maître JL. Morphogenesis of the human preimplantation embryo: bringing mechanics to the clinics. Semin Cell Dev Biol. 2021;120:22-31. http://dx.doi.org/10.1016/j.semcdb.2021.07.005. PMid:34253437.

Foxcroft GR, Hunter MG. Basic physiology of follicular maturation in the pig. J Reprod Fertil Suppl. 1985;33:1-19. PMid:3003359.

Frankfurter D, Trimarchi J, Hackett R, Meng L, Keefe D. Monozygotic pregnancies from transfers of zona-free blastocysts. Fertil Steril. 2004;82(2):483-5. http://dx.doi.org/10.1016/j.fertnstert.2004.02.105. PMid:15302309.

Fujii W, Nishimura T, Kano K, Sugiura K, Naito K. CDK7 and CCNH are components of CDK-activating kinase and are required for meiotic progression of pig oocytes. Biol Reprod. 2011;85(6):1124-32. http://dx.doi.org/10.1095/biolreprod.111.091801. PMid:21778139.

Fulka J Jr, Moor RM, Loi P, Fulka J. Enucleolation of porcine oocytes. Theriogenology. 2003;59(8):1879-85. http://dx.doi.org/10.1016/S0093-691X(02)01226-8. PMid:12566159.

Fulka J Jr, Motlik J, Fulka J, Jílek F. Effect of cycloheximide on nuclear maturation of pig and mouse oocytes. J Reprod Fertil. 1986;77(1):281-5. http://dx.doi.org/10.1530/jrf.0.0770281. PMid:3723473.

Galli C, Lagutina I, Crotti G, Colleoni S, Turini P, Ponderato N, Duchi R, Lazzari G. A cloned horse born to its dam twin. Nature. 2003;424(6949):635. http://dx.doi.org/10.1038/424635a. PMid:12904778.

Gärtner K, Baunack E. Is the similarity of monozygotic twins due to genetic factors alone? Nature. 1981;292(5824):646-7. http://dx.doi.org/10.1038/292646a0. PMid:7254360.

Ge X, Zhang J, Shi H, Bu Z, Sun Y. Effect of blastocyst morphology on the incidence of monozygotic twinning pregnancy after single blastocyst transfer: a retrospective cohort study. Research Square. Forthcoming 2022. https://doi.org/10.21203/rs.3.rs-1512842/v1.

Gérard M, Ménézo Y, Rombauts P, Szöllösi D, Thibault C. In vitro studies of oocyte maturation and follicular metabolism in the pig. Ann Biol Anim Biochim Biophys. 1979;19(5):1521-35. http://dx.doi.org/10.1051/rnd:19790914.

Govaere J, Hoogewijs M, Schauwer C, Van Zeveren A, Smits K, Cornillie P, Kruif A. An abortion of monozygotic twins in a warmblood mare. Reprod Domest Anim. 2009;44(5):852-4. http://dx.doi.org/10.1111/j.1439-0531.2008.01112.x. PMid:19055562.

Gregory KE, Maurer RR. Prenatal and postnatal maternal contributions to reproductive, maternal, and size-related traits of beef cattle. J Anim Sci. 1991;69(3):961-76. http://dx.doi.org/10.2527/1991.693961x. PMid:2061266.

Grupen CG. The evolution of porcine embryo in vitro production. Theriogenology. 2014;81(1):24-37. http://dx.doi.org/10.1016/j.theriogenology.2013.09.022. PMid:24274407.

Gu YF, Zhou QW, Zhang SP, Lu CF, Gong F, Tan YQ, Lu GX, Lin G. Inner cell mass incarceration in 8-shaped blastocysts does not increase monozygotic twinning in preimplantation genetic diagnosis and screening patients. PLoS One. 2018;13(1):e0190776. http://dx.doi.org/10.1371/journal.pone.0190776. PMid:29315321.

Guilbault LA, Roy GL, Beckers JF, Dufour JJ. Influence of breed of fetus on periparturient endocrine responses and subsequent milk production of Ayrshire dams. J Dairy Sci. 1990;73(10):2766-73. http://dx.doi.org/10.3168/jds.S0022-0302(90)78962-X. PMid:2283407.

Guthrie HD, Garrett WM. Changes in porcine oocyte germinal vesicle development as follicles approach preovulatory maturity. Theriogenology. 2000;54(3):389-99. http://dx.doi.org/10.1016/S0093-691X(00)00356-3. PMid:11051322.

Håberg SE, Page CM, Lee Y, Nustad HE, Magnus MC, Haftorn KL, Carlsen EØ, Denault WRP, Bohlin J, Jugessur A, Magnus P, Gjessing HK, Lyle R. DNA methylation in newborns conceived by assisted reproductive technology. Nat Commun. 2022;13(1):1896. http://dx.doi.org/10.1038/s41467-022-29540-w. PMid:35393427.

Hall JL, Engel D, Gindoff PR, Mottla GL, Stillman RJ. Experimental cloning of human polyploid embryos using an artificial zona pellucida. Fertil Steril. 1993;60(S1):O-001.

Hancock J. Monozygotic twins in cattle. Adv Genet. 1954;6:141-81. http://dx.doi.org/10.1016/S0065-2660(08)60129-7. PMid:13180447.

Hancock SN, Oliver MH, McLean C, Jaquiery AL, Bloomfield FH. Size at birth and adult fat mass in twin sheep are determined in early gestation. J Physiol. 2012;590(5):1273-85. http://dx.doi.org/10.1113/jphysiol.2011.220699. PMid:22183720.

Hansen PJ. Implications of assisted reproductive technologies for pregnancy outcomes in mammals. Annu Rev Anim Biosci. 2020a;8(1):395-413. http://dx.doi.org/10.1146/annurev-animal-021419-084010. PMid:32069434.

Hansen PJ. The incompletely fulfilled promise of embryo transfer in cattle: why aren’t pregnancy rates greater and what can we do about it? J Anim Sci. 2020b;98(11):skaa288. http://dx.doi.org/10.1093/jas/skaa288. PMid:33141879.

Hardarson T, Van Landuyt L, Jones G. The blastocyst. Hum Reprod. 2012;27(Suppl 1):i72-91. http://dx.doi.org/10.1093/humrep/des230. PMid:22763375.

Hashiyada Y. The contribution of efficient production of monozygotic twins to beef cattle breeding. J Reprod Dev. 2017;63(6):527-38. http://dx.doi.org/10.1262/jrd.2017-096. PMid:29033399.

Herranz G. Response: the timing of monozygotic twinning: a pro-life challenge to conventional scientific wisdom. Reprod Biomed Online. 2014;28(6):789. http://dx.doi.org/10.1016/j.rbmo.2014.04.004. PMid:24899086.

Herranz G. The timing of monozygotic twinning: a criticism of the common model. Zygote. 2015;23(1):27-40. http://dx.doi.org/10.1017/S0967199413000257. PMid:23735171.

Hinde K, Carpenter AJ, Clay JS, Bradford BJ. Holsteins favor heifers, not bulls: biased milk production programmed during pregnancy as a function of fetal sex. PLoS One. 2014;9(2):e86169. http://dx.doi.org/10.1371/journal.pone.0086169. PMid:24498270.

Hinkelman LA, Bradford GE, Pollak EJ, Anderson GB, Cupps PT. An embryo transfer study of birth weight in Finnish landrace and Targee sheep. J Anim Sci. 1979;48(2):298-306. http://dx.doi.org/10.2527/jas1979.482298x. PMid:528403.

Hiradate Y, Hoshino Y, Tanemura K, Sato E. C-type natriuretic peptide inhibits porcine oocyte meiotic resumption. Zygote. 2014;22(3):372-7. http://dx.doi.org/10.1017/S0967199412000615. PMid:23331536.

Hsu YC, Gonda MA. Monozygotic twin formation in mouse embryos in vitro. Science. 1980;209(4456):605-6. http://dx.doi.org/10.1126/science.7190325. PMid:7190325.

Huang J, Deng K, Wu H, Liu Z, Chen Z, Cao S, Zhou L, Ye X, Keefe DL, Liu L. Efficient production of mice from embryonic stem cells injected into four- or eight-cell embryos by piezo micromanipulation. Stem Cells. 2008;26(7):1883-90. http://dx.doi.org/10.1634/stemcells.2008-0164. PMid:18467666.

Hunter GL. The maternal influence on size in sheep. J Agric Sci. 1956;48(1):36-60. http://dx.doi.org/10.1017/S0021859600030318.

Hunter MG. Oocyte maturation and ovum quality in pigs. Rev Reprod. 2000;5(2):122-30. http://dx.doi.org/10.1530/ror.0.0050122. PMid:10864857.

Hunter RHF, Polge C. Maturation of follicular oocytes in the pig after injection of human chorionic gonadotrophin. J Reprod Fertil. 1966;12(3):525-31. http://dx.doi.org/10.1530/jrf.0.0120525. PMid:5333204.

Illmensee K, Kaskar K, Zavos PM. In vitro blastocyst development from serially split mouse embryos and future implications for human assisted reproductive technologies. Fertil Steril. 2006;86(4, Suppl):1112-20. http://dx.doi.org/10.1016/j.fertnstert.2006.02.103. PMid:16962118.

Illmensee K, Levanduski M, Vidali A, Husami N, Goudas VT. Human embryo twinning with applications in reproductive medicine. Fertil Steril. 2010;93(2):423-7. http://dx.doi.org/10.1016/j.fertnstert.2008.12.098. PMid:19217091.

Inoue M, Naito K, Aoki F, Toyoda Y, Sato Y. Activation of mitogen-activated protein kinase during meiotic maturation in porcine oocytes. Zygote. 1995;3(3):265-71. http://dx.doi.org/10.1017/S0967199400002665. PMid:8903796.

Ivanova MD, Gregoraszczuk EL, Augustowska K, Kolodziejczyk J, Mollova MV, Kehayov IR. Localization of atrial natriuretic peptide in pig granulosa cells isolated from ovarian follicles of various size. Reprod Biol. 2003;3(2):173-81. PMid:14666140.

Iwasaki S, Campbell KHS, Galli C, Akiyama K, Iwasaki S. Production of live calves derived from embryonic stem-like cells aggregated with tetraploid embryos. Biol Reprod. 2000;62(2):470-5. http://dx.doi.org/10.1095/biolreprod62.2.470. PMid:10642589.

Jaffe LA, Egbert JR. Regulation of mammalian oocyte meiosis by intercellular communication within the ovarian follicle. Annu Rev Physiol. 2017;79(1):237-60. http://dx.doi.org/10.1146/annurev-physiol-022516-034102. PMid:27860834.

Jöchle W. To our readers. Theriogenology. 1983;19:293.

Johansson I, Lindhé B, Pirchner F. Causes of variation in the frequency of monozygous and dizygous twinning in various breeds of cattle. Hereditas. 1974;78(2):201-34. http://dx.doi.org/10.1111/j.1601-5223.1974.tb01443.x. PMid:4477988.

Johnson GP, Jonas KC. Mechanistic insight into how gonadotropin hormone receptor complexes direct signaling. Biol Reprod. 2020;102(4):773-83. http://dx.doi.org/10.1093/biolre/ioz228. PMid:31882999.

Johnson MH, McConnell J, Van Blerkom J. Programmed development in the mouse embryo. J Embryol Exp Morphol. 1984;83(Suppl):197-231. PMid:6085344.

Johnson WH, Loskutoff NM, Plante Y, Betteridge KJ. Production of four identical calves by the separation of blastomeres from an in vitro derived four-cell embryo. Vet Rec. 1995;137(1):15-6. http://dx.doi.org/10.1136/vr.137.1.15. PMid:7483226.

Jonsson H, Magnusdottir E, Eggertsson HP, Stefansson OA, Arnadottir GA, Eiriksson O, Zink F, Helgason EA, Jonsdottir I, Gylfason A, Jonasdottir A, Jonasdottir A, Beyter D, Steingrimsdottir T, Norddahl GL, Magnusson OT, Masson G, Halldorsson BV, Thorsteinsdottir U, Helgason A, Sulem P, Gudbjartsson DF, Stefansson K. Differences between germline genomes of monozygotic twins. Nat Genet. 2021;53(1):27-34. http://dx.doi.org/10.1038/s41588-020-00755-1. PMid:33414551.

Joonè CJ, Cramer KGM, Nöthling JO. The first case of genetically confirmed monozygotic twinning in the dog. Reprod Domest Anim. 2016;51(5):835-9. http://dx.doi.org/10.1111/rda.12746. PMid:27545903.

Kalinowski RR, Berlot CH, Jones TL, Ross LF, Jaffe LA, Mehlmann LM. Maintenance of meiotic prophase arrest in vertebrate oocytes by a Gs protein-mediated pathway. Dev Biol. 2004;267(1):1-13. http://dx.doi.org/10.1016/j.ydbio.2003.11.011. PMid:14975713.

Kalous J, Tetkova A, Kubelka M, Susor A. Importance of ERK1/2 in regulation of protein translation during oocyte meiosis. Int J Mol Sci. 2018;19(3):698. http://dx.doi.org/10.3390/ijms19030698. PMid:29494492.

Kanayama N, Miyano T, Lee J. Acquisition of meiotic competence in growing pig oocytes correlates with their ability to activate Cdc2 kinase and MAP kinase. Zygote. 2002;10(3):261-70. http://dx.doi.org/10.1017/S0967199402002344. PMid:12214808.

Karihaloo AK, Combs W. Some prenatal effects on birth size in Lincoln and Southdown lambs produced by reciprocal ovum transfers. Can J Anim Sci. 1971;51(3):729-34. http://dx.doi.org/10.4141/cjas71-098.

Katayama M, Ellersieck MR, Roberts RM. Development of monozygotic twin mouse embryos from the time of blastomere separation at the two-cell stage to blastocyst. Biol Reprod. 2010;82(6):1237-47. http://dx.doi.org/10.1095/biolreprod.109.082982. PMid:20181620.

Kim D, Roh S. Strategy to establish embryo-derived pluripotent stem cells in cattle. Int J Mol Sci. 2021;22(9):5011. http://dx.doi.org/10.3390/ijms22095011. PMid:34065074.

Kim SH, Cho KW, Lim SH, Hwang YH, Ryu H, Oh SH, Seul KH, Jeong GB, Yoon S. Presence and release of immunoreactive atrial natriuretic peptide in granulosa cells of the pig ovarian follicle. Regul Pept. 1992;42(3):153-62. http://dx.doi.org/10.1016/0167-0115(92)90095-C. PMid:1289975.

Kimber SJ, Surani MAH, Barton SC. Interactions of blastomeres suggest changes in cell surface adhesiveness during the formation of inner cell mass and trophectoderm in the preimplantation mouse embryo. J Embryol Exp Morphol. 1982;70(1):133-52. http://dx.doi.org/10.1242/dev.70.1.133. PMid:7142894.

King KK, Seidel GE Jr, Elsden RP. Bovine embryo transfer pregnancies. 1. Abortion rates and characteristics of calves. J Anim Sci. 1985;61(4):747-57. http://dx.doi.org/10.2527/jas1985.614747x. PMid:4066533.

Kinoshita M, Kobayashi T, Planells B, Klisch D, Spindlow D, Masaki H, Bornelöv S, Stirparo GG, Matsunari H, Uchikura A, Lamas-Toranzo I, Nichols J, Nakauchi H, Nagashima H, Alberio R, Smith A. Pluripotent stem cells related to embryonic disc exhibit common self-renewal requirements in diverse livestock species. Development. 2021;148(23):dev199901. http://dx.doi.org/10.1242/dev.199901. PMid:34874452.

Kippax I, Christie W, Rowan T. Effects of method of splitting, stage of development and presence or absence of zone pellucida on foetal survival in commercial bovine embryo transfer of bisected embryos. Theriogenology. 1991;35(1):25-35. http://dx.doi.org/10.1016/0093-691X(91)90145-4.

Klein C, Bauersachs S, Ulbrich SE, Einspanier R, Meyer HHD, Schmidt SEM, Reichenbach HD, Vermehren M, Sinowatz F, Blum H, Wolf E. Monozygotic twin model reveals novel embryo-induced transcriptome changes of bovine endometrium in the preattachment period. Biol Reprod. 2006;74(2):253-64. http://dx.doi.org/10.1095/biolreprod.105.046748. PMid:16207835.

Knox RV. Factors influencing follicle development in gilts and sows and management strategies used to regulate growth for control of estrus and ovulation. J Anim Sci. 2019;97(4):1433-45. http://dx.doi.org/10.1093/jas/skz036. PMid:30715326.

Kohri N, Akizawa H, Iisaka S, Bai H, Yanagawa Y, Takahashi M, Komatsu M, Kawai M, Nagano M, Kawahara M. Trophectoderm regeneration to support full-term development in the inner cell mass isolated from bovine blastocyst. J Biol Chem. 2019;294(50):19209-23. http://dx.doi.org/10.1074/jbc.RA119.010746. PMid:31704705.

Kölliker A. 27. Placenta, Nabelstrang. In: Kölliker A. Entwicklungsgeschichte des Menschen und den höheren Thiere. Leipzig: Engelmann; 1876. p. 331-363, 348-50, 362 German. http://dx.doi.org/10.5962/bhl.title.51250.

Konno H, Murakoshi T, Miura K, Masuzaki H. The incidence of dichorionic diamniotic twin pregnancy after single blastocyst embryo transfer and zygosity: 8 years of single-center experience. Twin Res Hum Genet. 2020;23(1):51-4. http://dx.doi.org/10.1017/thg.2020.5. PMid:32209150.

Kraay GJ, Menard DP, Bedoy M. Monozygous cattle twins as a result of transfer of a single embryo. Can Vet J. 1983;24(9):281-3. PMid:17422302.

Krawczyk K, Kosyl E, Częścik-Łysyszyn K, Wyszomirski T, Maleszewski M. Developmental capacity is unevenly distributed among single blastomeres of 2-cell and 4-cell stage mouse embryos. Sci Rep. 2021;11(1):21422. http://dx.doi.org/10.1038/s41598-021-00834-1. PMid:34728646.

Krek W, Nigg EA. Cell cycle regulation of vertebrate p34cdc2 activity: identification of Thr 161 as an essential in vivo phosphorylation site. New Biol. 1992;4(4):323-9. PMid:1622929.

Krentz KJ, Nebel RL, Canseco RS, McGilliard ML. In vitro and in vivo development of mouse morulae encapsulated in 2% sodium alginate or 0.1% poly-l-lysine. Theriogenology. 1993;39(3):655-67. http://dx.doi.org/10.1016/0093-691X(93)90251-Y. PMid:16727243.

Kubelka M, Anger M, Kalous J, Schultz RM, Motlik J. Chromosome condensation in pig oocytes: lack of a requirement for either cdc2 kinase or MAP kinase activity. Mol Reprod Dev. 2002;63(1):110-8. http://dx.doi.org/10.1002/mrd.10176. PMid:12211068.

Kumar D, Talluri TR, Selokar NL, Hyder I, Kues W. Perspectives of pluripotent stem cells in livestock. World J Stem Cells. 2021;13(1):1-29. http://dx.doi.org/10.4252/wjsc.v13.i1.1. PMid:33584977.

Kuroda T, Naito K, Sugiura K, Yamashita M, Takakura I, Tojo H. Analysis of the roles of cyclin B1 and cyclin B2 in porcine oocyte maturation by inhibiting synthesis with antsense RNA injection. Biol Reprod. 2004;70(1):154-9. http://dx.doi.org/10.1095/biolreprod.103.021519. PMid:12954723.

Kyono K. The precise timing of embryo splitting for monozygotic dichorionic diamniotic twins: when does embryo splitting for monozygotic dichorionic diamniotic twins occur? Evidence for splitting at the morula/blastocyst stage from studies of in vitro fertilization. Twin Res Hum Genet. 2013;16(4):827-32. http://dx.doi.org/10.1017/thg.2013.32. PMid:23702384.

Laforest MF, Pouliot É, Guéguen L, Richard FJ. Fundamental significance of specific phophodiesterases in the control of spontaneous meiotic resumption in porcine oocytes. Mol Reprod Dev. 2005;70(3):361-72. http://dx.doi.org/10.1002/mrd.20203. PMid:15625697.

Lagutina I, Lazzari G, Duchi R, Turini P, Tessaro I, Brunetti D, Colleoni S, Crotti G, Galli C. Comparative aspects of somatic cell nuclear transfer with conventional and zona-free method in cattle, horse, pig and sheep. Theriogenology. 2007;67(1):90-8. http://dx.doi.org/10.1016/j.theriogenology.2006.09.011. PMid:17081599.

Le Verge-Serandour M, Turlier H. Blastocoel morphogenesis: a biophysics perspective. Semin Cell Dev Biol. 2022;130:12-23. http://dx.doi.org/10.1016/j.semcdb.2021.10.005. PMid:34756494.

Lee CY. The porcine ovarian follicle: III. Development of chorionic gonadotropin receptors associated with increase in adenyl cyclase avtivity during follicle maturation. Endocrinology. 1976;99(1):42-8. http://dx.doi.org/10.1210/endo-99-1-42. PMid:181240.

Lee JB, Lee MG, Lin T, Shin HY, Lee EJ, Kang WJ, Jin DI. Effect of oocyte chromatin status in porcine follicles on the embryo development in vitro. Asian-Australas J Anim Sci. 2019;32(7):956-65. http://dx.doi.org/10.5713/ajas.18.0739. PMid:30744366.

Leman AD, Dziuk PJ. Fertilization and development of pig follicular oocytes. J Reprod Fertil. 1971;26(3):387-9. http://dx.doi.org/10.1530/jrf.0.0260387. PMid:5569655.

Li H, Shen T, Sun X. Monozygotic dichorionic-diamniotic pregnancies following single frozen-thawed blastocyst transfer: a retrospective case series. BMC Pregnancy Childbirth. 2020;20(1):768. http://dx.doi.org/10.1186/s12884-020-03450-5. PMid:33302917.

Liang CG, Huo LJ, Zhong ZS, Chen DY, Schatten H, Sun QY. Cyclic adenosine 3′,5′-monophosphate-dependent activation of mitogen-activated protein kinase in cumulus cells is essential for germinal vesicle breakdown of porcine cumulus-enclosed oocytes. Endocrinology. 2005;146(10):4437-44. http://dx.doi.org/10.1210/en.2005-0309. PMid:16002524.

Liggins GC. Parturition in the sheep and the human. In: Coutinho EM, Fuchs F, editors. Physiology and genetics of reproduction. Part B. Boston: Springer; 1974. p. 423-43. http://dx.doi.org/10.1007/978-1-4684-2892-6_28.

Lipke C, Meinecke-Tillmann C, Meyer W, Meinecke B. Preparation and ultrastructure of spermatozoa from green poison frogs, Dendrobates auratus, following hormonal induced spermiation (Amphibia, Anura, Dendrobatidae). Anim Reprod Sci. 2009a;113(1-4):177-86. http://dx.doi.org/10.1016/j.anireprosci.2008.06.005. PMid:18657373.

Lipke C, Meinecke-Tillmann S, Meinecke B. Induced spermiation and sperm morphology in a dendrobatid frog, Dendrobates auratus (Amphibia, Anura, Dendrobatidae). Salamandra. 2009b;45:65-74.

Liu J, Aronow BJ, Witte DP, Pope WF, La Barbera AR. Cyclic and maturation-dependent regulation of follicle-stimulating hormone receptor and luteinizing hormone receptor messenger ribonucleic acid expression in the porcine ovary. Biol Reprod. 1998;58(3):648-58. http://dx.doi.org/10.1095/biolreprod58.3.648. PMid:9510952.

Liu M, Zhao L, Wang Z, Su H, Wang T, Yang G, Chen L, Wu B, Zhao G, Guo J, Yang Z, Zhang J, Hao C, Ma T, Song Y, Bao S, Zuo Y, Li X, Cao G. Generation of sheep induced pluripotent stem cells with defined DOX-inducible transcription factors via piggyBac transposition. Front Cell Dev Biol. 2021;9:785055. http://dx.doi.org/10.3389/fcell.2021.785055. PMid:34977028.

Liu S, Hong Y, Cui K, Guan J, Han L, Chen W, Xu Z, Gong K, Ou Y, Zeng C, Li S, Zhang D, Hu D. Four-generation pedigree of monozygotic female twins reveals genetic factors in twinning process by whole-genome sequencing. Twin Res Hum Genet. 2018;21(5):361-8. http://dx.doi.org/10.1017/thg.2018.41. PMid:30064533.

Liu W, Xin Q, Wang X, Wang S, Wang H, Zhang W, Yang Y, Zhang Y, Zhang Z, Wang C, Xu Y, Duan E, Xia G. Estrogen receptors in granulosa cells govern meiotic resumption of pre-ovulatory oocytes in mammals. Cell Death Dis. 2017;8(3):e2662. http://dx.doi.org/10.1038/cddis.2017.82. PMid:28277543.

Liu Y, Jones C, Coward K. The current practice of assisted hatching for embryos in fertility centres: a general survey. Reprod Sci. 2022;29(9):2664-73. http://dx.doi.org/10.1007/s43032-022-00931-0. PMid:35411451.

Loi P, Galli C, Lazzari G, Matsukawa K, Fulka J Jr, Goeritz F, Hildebrandt TB. Development to term of sheep embryos reconstructed after inner cell mass/trophoblast exchange. J Reprod Dev. 2018;64(2):187-91. http://dx.doi.org/10.1262/jrd.2017-109. PMid:29445070.

Lopes JS, Soriano-Úbeda C, París-Oller E, Navarro-Serna S, Canha-Gouveia A, Sarrias-Gil L, Cerón JJ, Coy P. Year-long phenotypical study of calves derived from different assisted-reproduction technologies. Front Vet Sci. 2022;8:739041. http://dx.doi.org/10.3389/fvets.2021.739041. PMid:35083305.

López-Moratalla N, Cerezo M. The self-construction of a living organism. In: Terzis G, Arp R, editors. Information and living systems: philosophical and scientific perspectives. Massachussets: MIT Press; 2011. p. 177-204. http://dx.doi.org/10.7551/mitpress/7944.003.0012.

Lorthongpanich C, Doris TPY, Limviphuvadh V, Knowles BB, Solter D. Developmental fate and lineage commitment of singled mouse blastomeres. Development. 2012;139(20):3722-31. http://dx.doi.org/10.1242/dev.086454. PMid:22991438.

Loughry WJ, Prodöhl PA, McDonough CM, Avise JC. Polyembryony in Armadillos. Am Sci. 1998;86:274-9. http://dx.doi.org/10.1511/1998.3.274.

Ma W, Zhang D, Hou Y, Li Y-H, Sun Q, Sun X-F, Wang W-H. Reduced expression of MAD2, BCL2, and MAP kinase activity in pig oocytes after in vitro aging are associated with defects in sister chromatid segregation during meiosis II and embryo fragmentation after activation. Biol Reprod. 2005;72(2):373-83. http://dx.doi.org/10.1095/biolreprod.104.030999. PMid:15469999.

Madani S, Machaty Z, Vajta G. An alternative way to improve mammalian embryo development in vitro: culture of zona pellucida-free embryos. Cell Reprogram. 2022;24(3):111-7. http://dx.doi.org/10.1089/cell.2022.0012. PMid:35506897.

Maemura M, Taketsuru H, Nakajima Y, Shao R, Kakihara A, Nogami J, Ohkawa Y, Tsukada YI. Totipotency of mouse zygotes extends to single blastomeres of embryos at the four-cell stage. Sci Rep. 2021;11(1):11167. http://dx.doi.org/10.1038/s41598-021-90653-1. PMid:34045607.

Magdi Y. Dizygotic twin from conjoined oocytes: a case report. J Assist Reprod Genet. 2020;37(6):1367-70. http://dx.doi.org/10.1007/s10815-020-01772-z. PMid:32285296.

Malter HE, Cohen J. Blastocyst formation and hatching in vitro following zona drilling of mouse and human embryos. Gamete Res. 1989;24(1):67-80. http://dx.doi.org/10.1002/mrd.1120240110. PMid:2591852.

Mancill SS, Blodgett G, Arnott RJ, Alvarenga M, Love CC, Hinrichs K. Description and genetic analysis of three sets of monozygotic twins resulting from transfers of single embryos to recipient mares. J Am Vet Med Assoc. 2011;238(8):1040-3. http://dx.doi.org/10.2460/javma.238.8.1040. PMid:21492048.

Marchal R, Feugang JM, Perreau C, Venturi E, Terqui M, Mermillod P. Meiotic and developmental competence of prepubertal and adult swine oocytes. Theriogenology. 2001;56(1):17-29. http://dx.doi.org/10.1016/S0093-691X(01)00539-8. PMid:11467513.

Marchal R, Vigneron C, Perreau C, Bali-Papp A, Mermillod P. Effect of follicular size on meiotic and developmental competence of porcine oocytes. Theriogenology. 2002;57(5):1523-32. http://dx.doi.org/10.1016/S0093-691X(02)00655-6. PMid:12054210.

Mashiko D, Ikeda Z, Tokoro MM, Hatano Y, Yao T, Kobayashi TJ, Fukunaga N, Asada Y, Yamagata K. Asynchronous division at 4-8-cell stage of preimplantation embryos affects live birth through ICM/TE differentiation. Sci Rep. 2022;12(1):9411. http://dx.doi.org/10.1038/s41598-022-13646-8. PMid:35672442.

Massip A, Vanderzwalmen P, Mulnard J, Zwijsen W. Atypical hatching of a cow blastocyst leading to separation of complete twin half blastocysts. Vet Rec. 1983;112(13):301. http://dx.doi.org/10.1136/vr.112.13.301. PMid:6682587.

Matsumoto K, Miyake M, Utsumi K, Iritani A. Production of identical twins by separating two-cell rat embryos. Gamete Res. 1989;22(3):257-63. http://dx.doi.org/10.1002/mrd.1120220303. PMid:2707729.

Mattioli M, Bacci ML, Galeati G, Seren E. Developmental competence of pig oocytes matured and fertilized in vitro. Theriogenology. 1989;31(6):1201-7. http://dx.doi.org/10.1016/0093-691X(89)90089-7. PMid:16726638.

Mattioli M, Barboni B. Signal transduction mechanism for LH in the cumulus-oocyte complex. Mol Cell Endocrinol. 2000;161(1-2):19-23. http://dx.doi.org/10.1016/S0303-7207(99)00218-X. PMid:10773386.

Mattioli M, Galeati B, Bacci ML, Barboni G. Changes in maturation-promoting activity in the cytoplasm of pig oocytes throughout maturation. Mol Reprod Dev. 1991;30(2):119-25. http://dx.doi.org/10.1002/mrd.1080300208. PMid:1954026.

Mattioli M, Galeati B, Barboni G, Seren E. Concentration of cyclic AMP during the maturation of pig oocytes in vivo and in vitro. J Reprod Fertil. 1994;100(2):403-9. http://dx.doi.org/10.1530/jrf.0.1000403. PMid:8021856.

Mattioli M, Galeati G, Bacci ML, Seren E. Follicular factors influence oocyte fertilizability by modulating the intracellular cooperation between cumulus cells and oocyte. Gamete Res. 1988;21(3):223-32. PMid:3246367.

McCue PM, Thayer J, Squires EL, Brinsko SP, Vanderwall DK. Twin pregnancies following transfer of single embryos in three mares: a case report. J Equine Vet Sci. 1998;18(12):832-4. http://dx.doi.org/10.1016/S0737-0806(98)80333-X.

McGaughey RW, Montgomery DH, Richter JD. Germinal vesicle configurations and patterns of polypeptide synthesis of porcine oocytes from antral follicles of different size, as related to their competency for spontaneous maturation. J Exp Zool. 1979;209(2):239-53. http://dx.doi.org/10.1002/jez.1402090206. PMid:512593.

McLaren A, Michie D. Factors affecting vertebral variation in mice. IV. Experimental proof of the uterine basis of a maternal effect. J Embryol Exp Morphol. 1958;6(4):645-59. PMid:13611143.

Meadows SJ, Binns MM, Newcombe JR, Thompson CJ, Rossdale PD. Identical triplets in a thoroughbred mare. Equine Vet J. 1995;27(5):394-7. http://dx.doi.org/10.1111/j.2042-3306.1995.tb04076.x. PMid:8654356.

Mehlmann LM, Saeki Y, Tanaka S, Brennan TJ, Evsikov AV, Pendola FL, Knowles BB, Eppig JJ, Jaffe LA. The Gs-linked receptor GPR3 maintains meiotic arrest in mammalian oocytes. Science. 2004;306(5703):1947-50. http://dx.doi.org/10.1126/science.1103974. PMid:15591206.

Meinecke B, Gips H, Meinecke-Tillmann S. Steroid hormone content of the developing preovulatory porcine follicle. In: Roche JF, O’Callaghan D, editors. Follicular growth and ovulatory rate in farm animals. Dordrecht: Martinus Nijhoff Publishers; 1987. p. 207-13.

Meinecke B, Gips H, Meinecke-Tillmann S. Zur Dynamik der präovulatorischen intrafollikulären Steroidhormoninkretion beim Schwein. Zuchthygiene. 1984;19(4):193-204. http://dx.doi.org/10.1111/j.1439-0531.1984.tb00970.x. German,

Meinecke B, Meinecke-Tillmann S. Die Reifungs- und Befruchtungspotenz atretischer Schweineeizellen in vivo und in vitro. Zuchthyg. 1978a;13(1):5-14. http://dx.doi.org/10.1111/j.1439-0531.1978.tb00176.x. German.

Meinecke B, Meinecke-Tillmann S. Experimentelle Untersuchungen zur Funktion der Cumuluszellen während der extrakorporalen Eizellreifung beim Schwein. Zbl Vet Med C. 1978b;7(1):58-69. http://dx.doi.org/10.1111/j.1439-0264.1978.tb00494.x. German.

Meinecke B, Meinecke-Tillmann S. Effects of gonadotropins on oocyte maturation and progesterone production by porcine ovarian follicles cultured in vitro. Theriogenology. 1979;11(5):351-65. http://dx.doi.org/10.1016/0093-691X(79)90059-1. PMid:16725420.

Meinecke B, Meinecke-Tillmann S. Effects of α-amanitin on nuclear maturation of porcine oocytes in vitro. J Reprod Fertil. 1993;98(1):195-201. http://dx.doi.org/10.1530/jrf.0.0980195. PMid:8345464.

Meinecke B, Meinecke-Tillmann S. Induction and inhibition of meiotic maturation of follicle-enclosed porcine oocytes in vitro. Theriogenology. 1981;15(6):581-9. http://dx.doi.org/10.1016/0093-691X(81)90061-3.

Meinecke B, Meinecke-Tillmann S. Inhibition of hnRNA synthesis prevents chromatin condensation activity in pig oocytes during maturation in vitro. Arch Tierz Dummerstorf. 1998;41:89-98.

Meinecke B. Hormonal and cellular interactions during maturation of porcine follicular oocytes. In: Hafez ESE, Semm K, editors. In vitro fertilization and embryo transfer. Saarbruecken: MTP press; 1981. p. 103-9.

Meinecke-Tillmann S, Meinecke B, Wassmuth R. Experimentelle Untersuchungen zur Erforschung der regulativen Kapazitäten von Schafembryonen in vivo und in vitro. Reprod Dom Anim. 1979;14(4):165-9. http://dx.doi.org/10.1111/j.1439-0531.1979.tb00935.x. German.

Meinecke-Tillmann S, Meinecke B. Experimental chimeras: removal of reproductive barrier between sheep and goat. Nature. 1984a;307(5952):637-8. http://dx.doi.org/10.1038/307637a0. PMid:6694752.

Meinecke-Tillmann S, Meinecke B. Identical twin formation in mammals. Evidence for developmental mechanisms based on microsurgical experiments with early cleavage stages. In: Feichtinger W, Kemeter P, editors. Recent progress in human in vitro fertilization. Palermo: Cofese; 1984b. p. 341-4.

Meinecke-Tillmann S, Meinecke B. Experiments on the establishment in culture of pluripotential cell lines from sheep, goat and pig embryos. In Proceedings of the 7th Scientific Meeting AETE; 1991 Sep 12-13; Cambridge. Cambridge, UK: AETE; 1991. p. 178.

Meinecke-Tillmann S, Meinecke B. Isolation of ES-like cell lines from ovine and caprine preimplantation embryos. J Anim Breed Genet. 1996;113(1-6):413-26. http://dx.doi.org/10.1111/j.1439-0388.1996.tb00632.x.

Meinecke-Tillmann S, Meinecke B. Microsurgical experiments on embryos in farm animals - basic and applied aspects. In: Feichtinger W, Kemeter P, editors. Future aspects in human in vitro fertilization. Berlin: Springer Verlag; 1987. p. 217-24. http://dx.doi.org/10.1007/978-3-642-71412-2_30.

Meinecke-Tillmann S, Meinecke B. Microsurgical treatment of cleavage stages in farm animals. In: Proceedings of the III World Congress of Human Reproduction; 1981 Mar 20-26; Berlin, Germany. Berlin, Germany. The Netherlands: Excerpta Medica; 1981. p. 22.3-6.3.

Meinecke-Tillmann S, Meinecke B. Mikrochirurgische Eingriffe am Embryo - Biologische Bedeutung und Konsequenzen für Forschung und Praxis. In: 32 Int. Fachtagung Fortpflanzung und Besamun; 1983; Wels, Österreich. Außenstelle Wels, Áustria: Institut für biologische Landwirtschaft und Biodiversität der Nutztiere; 1983a. German.

Meinecke-Tillmann S, Meinecke B. Möglichkeiten und Grenzen der Mikromanipulation embryonaler Furchungsstadien landwirtschaftlicher Nutztiere dargestellt am Modell artifiziell monozygoter Zwillinge beim Schaf. Zbl. Vet Med A. 1983b;30:146-53. German.

Meinecke-Tillmann S, Meinecke B. Ultrasonography in small ruminant reproduction. In: Schatten H, Constantinescu GM, editors. Comparative reproductive biology. Ames: Blackwell Publishing; 2007. p. 349-76. http://dx.doi.org/10.1002/9780470390290.ch14.

Meinecke-Tillmann S, Wassmuth R. Experimentelle Untersuchungen zur Embryonenübertragung beim Schaf unter tierzüchterischen Gesichtspunkten. II. Maternale Einflüsse auf das prä- und postnatale Wachstum von Lämmern. J Anim Breed Genet. 1977;94:217-25. German.

Meinecke-Tillmann S. Basics of ultrasonographic examination in sheep. Small Rumin Res. 2017;152:10-21. http://dx.doi.org/10.1016/j.smallrumres.2016.12.023.

Meinecke-Tillmann S. Die experimentelle Mikrochirurgie am Säugetier-Embryo in der Perspektive der reproduktionsphysiologischen Forschung. In: Schirren C, Semm K, editors. Fortschritte der Fertilitätsforschung. FDF 12. Berlin: Grosse Verlag; 1984. p. 426-9. German.

Meinecke-Tillmann S. Experimentelle Untersuchungen zur Entwicklungskapazität von Präembryonalstadien kleiner Wiederkäuer in vivo und in vitro unter Berücksichtigung des Embryotransfers [thesis]. Giessen, Germany: Justus-Liebig-Universität Gießen; 1993.

Meinecke-Tillmann S. Künstlich erzeugte eineiige Schafzwillinge. Umsch Wiss Tech. 1980;80:248-9. German.

Meintjes M, Guerami AR, Rodriguez JA, Crider-Pirkle SS, Madden JD. Prospective identification of an in-vitro-assisted monozygotic pregnancy based on a double-inner-cell-mass blastocyst. Fertil Steril. 2001;76(3):S172-3. http://dx.doi.org/10.1016/S0015-0282(01)02509-2.

Ménézo YJR, Sakkas D. Monozygotic twinning: is it related to apoptosis in the embryo? Hum Reprod. 2002;17(1):247-8. http://dx.doi.org/10.1093/humrep/17.1.247. PMid:11756395.

Mintz B. Experimental genetic mosaicism in the mouse. In: Wolstenholme GEW, O’Connor M, editors. Preimplantation stages of pregnancy. London: J & A Churchill; 1965. p. 194-216.

Mio Y, Maeda K. Time-lapse cinematography of dynamic changes occurring during in vitro development of human embryos. Am J Obstet Gynecol. 2008;199(6):660.e1-5. http://dx.doi.org/10.1016/j.ajog.2008.07.023. PMid:18823872.

Mitalipov SM, Yeoman RR, Kuo HC, Wolf DP. Monozygotic twinning in rhesus monkeys by manipulation of in vitro-derived embryos. Biol Reprod. 2002;66(5):1449-55. http://dx.doi.org/10.1095/biolreprod66.5.1449. PMid:11967209.

Miyano T, Ogushi S, Bui H-T, Lee J. Meiotic resumption and spindle formation of pig oocytes. J Mamm Ova Res. 2007;24(3):92-8. http://dx.doi.org/10.1274/jmor.24.92.

Modliński JA, Ozil JP, Modlińska MK, Szarska A, Reed MA, Wagner TE, Karasiewicz J. Development of single mouse blastomeres enlarged to zygote size in conditions of nucleo-cytoplasmic synchrony. Zygote. 2002;10(4):283-90. http://dx.doi.org/10.1017/S096719940200401X. PMid:12463523.

Modliński JA, Stefański G, Górniewska M, Korwin-Kossakowski M, Reed MA, Guszkiewicz A, Karasiewicz J. Trophoblastic vesicles as carriers of embryonic cells for mammalian cloning. J Anim Feed Sci. 2004;13(1):197-204. http://dx.doi.org/10.22358/jafs/67404/2004.

Modliński JA. The role of the zona pellucida in the development of mouse eggs in vivo. J Embryol Exp Morphol. 1970;23(3):539-47. PMid:5473304.

Moor R, Dai Y. Maturation of pig oocytes in vivo and in vitro. Reprod Suppl. 2001;58:91-104. PMid:11980205.

Moore NW, Polge C, Rowson LEA. The survival of single blastomeres of pig eggs transferred to recipient gilts. Aust J Biol Sci. 1969;22(4):979-82. http://dx.doi.org/10.1071/BI9690979.

Moreira F, Corcini CD, Mondadori RG, Gevehr-Fernandes C, Mendes FF, Araújo EG, Lucia T Jr. Leptin and mitogen-activated protein kinase (MAPK) in oocytes of sows and gilts. Anim Reprod Sci. 2013;139(1-4):89-94. http://dx.doi.org/10.1016/j.anireprosci.2013.03.011. PMid:23602489.

Morikawa M, Seki M, Kume S, Endo T, Nishimura Y, Kano K, Naito K. Meiotic resumption of porcine immature oocytes is prevented by ooplasma Gsα functions. J Reprod Dev. 2007;53(6):1151-7. http://dx.doi.org/10.1262/jrd.19055. PMid:17693700.

Moros-Nicolás C, Chevret P, Jiménez-Movilla M, Algarra B, Cots-Rodríguez P, González-Brusi L, Avilés M, Izquierdo-Rico MJ. New insights into the mammalian egg zona pellucida. Int J Mol Sci. 2021;22(6):3276. http://dx.doi.org/10.3390/ijms22063276. PMid:33806989.

Motlik J, Crozet N, Fulka J. Meiotic competence in vitro of pig oocytes isolated from early antral follicles. J Reprod Fertil. 1984;72(2):323-8. http://dx.doi.org/10.1530/jrf.0.0720323. PMid:6392543.

Motlik J, Fulka J, Fléchon J-E. Changes in intercellular coupling between pig oocytes and cumulus cells during maturation in vivo and in vitro. J Reprod Fertil. 1986;76(1):31-7. http://dx.doi.org/10.1530/jrf.0.0760031. PMid:3080593.

Motlík J, Fulka J. Breakdown of the germinal vesicle in pig oocytes in vivo and in vitro. J Exp Zool. 1976;198(2):155-62. http://dx.doi.org/10.1002/jez.1401980205. PMid:978166.

Motlík J, Fulka J. Factors affecting meiotic competenz in pig oocytes. Theriogenology. 1986;25(1):87-96. http://dx.doi.org/10.1016/0093-691X(86)90185-8.

Motlik J, Nagai T, Kikuchi K. Resumption of meiosis in pig oocytes cultured with cumulus and parietal granulosa cells: the effect of protein synthesis inhibition. J Exp Zool. 1991;259(3):386-91. http://dx.doi.org/10.1002/jez.1402590314. PMid:1919466.

Moustafa LA, Hahn J. Experimentelle Erzeugung von identischen Mäusezwillingen. Dtsch Tierarztl Wochenschr. 1978;85(6):242-4. German. PMid:350548.

Moyaert I, Bouters R, Bouquet Y. Birth of a monozygotic cattle twin following non surgical transfer of a single 7 day old embryo. Theriogenology. 1982;18(2):127-32. http://dx.doi.org/10.1016/0093-691X(82)90097-8. PMid:16725734.

Mueller ML, Van Eenennaam AL. Synergistic power of genomic selection, assisted reproductive technologies, and gene editing to drive genetic improvement of cattle. CABI Agric Biosci. 2022;3(1):13. http://dx.doi.org/10.1186/s43170-022-00080-z.

Mullen RJ. Transplantation of mouse embryos, sex ratios of chimeric mice, and monzygotic twins [dissertation]. Durham: University of New Hampshire; 1971.

Murakami M, Ferguson CE, Perez O, Boediono A, Paccamonti D, Bondioli KR, Godke RA. Transfer of inner cell mass cells derived from bovine nuclear transfer embryos into the trophoblast of bovine in vitro-produced embryos. Cloning Stem Cells. 2006;8(1):51-60. http://dx.doi.org/10.1089/clo.2006.8.51. PMid:16571077.

Nagashima H, Kato Y, Ogawa S. Microsurgical bisection of porcine morulae and blastocysts to produce monozygotic twin pregnancy. Gamete Res. 1989;23(1):1-9. http://dx.doi.org/10.1002/mrd.1120230102. PMid:2501204.

Nagashima H, Matsui K, Sawasaki T, Kano Y. Production of monozygotic mouse twins from microsurgically bisected morulae. J Reprod Fertil. 1984;70(1):357-62. http://dx.doi.org/10.1530/jrf.0.0700357. PMid:6363694.

Nagatomo H, Yao T, Araki Y, Mizutani E, Wakayama T. Agarose capsules as new tools for protecting denuded mouse oocytes/embryos during handling and freezing-thawing and supporting embryonic development in vivo. Sci Rep. 2017;7(1):17960. http://dx.doi.org/10.1038/s41598-017-18365-z. PMid:29263435.

Nagy A, Gocza E, Diaz EM, Prideaux VR, Ivanyi E, Markkula M, Rossant J. Embryonic stem cells alone are able to support fetal development in the mouse. Development. 1990;110(3):815-21. http://dx.doi.org/10.1242/dev.110.3.815. PMid:2088722.

Nagy A, Rossant J, Nagy R, Abramow-Newerly W, Roder JC. Derivation of completely cell culture-derived mice from early-passage embryonic stem cells. Proc Natl Acad Sci USA. 1993;90(18):8424-8. http://dx.doi.org/10.1073/pnas.90.18.8424. PMid:8378314.

Naito K, Hawkins C, Yamashita M, Nagahama Y, Aoki F, Kohmoto K, Toyoda Y, Moor RM. Association of p34cdc2 and Cyclin B1 during meiotic maturation in porcine oocytes. Dev Biol. 1995;168(2):627-34. http://dx.doi.org/10.1006/dbio.1995.1107. PMid:7729593.

Naito K, Toyoda Y. Fluctuation of histone HI kinase activity during meiotic maturation in porcine oocytes. J Reprod Fertil. 1991;93(2):467-73. http://dx.doi.org/10.1530/jrf.0.0930467. PMid:1787467.

Nakano R, Akahori T, Katayama K, Tojo S. Binding of LH and FSH to porcine granulosa cells during follicular maturation. J Reprod Fertil. 1977;51(1):23-7. http://dx.doi.org/10.1530/jrf.0.0510023. PMid:199723.

Nakasuji T, Saito H, Araki R, Nakaza A, Nakashima A, Kuwahara A, Ishihara O, Irahara M, Kubota T, Yoshimura Y, Sakumoto T. The incidence of monozygotic twinning in assisted reproductive technology: analysis based on results from the 2010 Japanese ART national registry. J Assist Reprod Genet. 2014;31(7):803-7. http://dx.doi.org/10.1007/s10815-014-0225-0. PMid:24722789.

Naqvi SMK, Joshi A, Gulyani R, Kumar D, Kolte AP, Kumar S, Maurya VP, Saha S, Mittal JP, Singh VK. Production of prolific microsheep by embryo transfer into large non-prolific sheep. Vet Rec. 2006;159(16):522-6. http://dx.doi.org/10.1136/vr.159.16.522. PMid:17041066.

Navarro M, Soto DA, Pinzon CA, Wu J, Ross PJ. Livestock pluripotency is finally captured in vitro. Reprod Fertil Dev. 2019;32(2):11-39. http://dx.doi.org/10.1071/RD19272. PMid:32188555.

Nichols J, Gardner RL. Effect of damage to the zona pellucida on development of preimplantation embryos in the mouse. Hum Reprod. 1989;4(2):180-7. http://dx.doi.org/10.1093/oxfordjournals.humrep.a136868. PMid:2918072.

Nishimura T, Fujii W, Kano K, Sugiura K, Naito K. Analyses of the involvement of PKA regulation mechanism in meiotic incompetence of porcine growing oocytes. Biol Reprod. 2012;87(3):53. http://dx.doi.org/10.1095/biolreprod.112.101279. PMid:22674394.

Nishimura T, Shimaoka T, Kano K, Naito K. Insufficient amount of Cdc2 and continous activation of Wee1 B are the cause of meiotic failure in porcine growing oocytes. J Reprod Dev. 2009;55(5):553-7. http://dx.doi.org/10.1262/jrd.09-072A. PMid:19550110.

Noli L, Capalbo A, Ogilvie C, Khalaf Y, Ilic D. Discordant growth of monozygotic twins starts at the blastocyst stage: a case study. Stem Cell Reports. 2015a;5(6):946-53. http://dx.doi.org/10.1016/j.stemcr.2015.10.006. PMid:26584541.

Noli L, Dajani Y, Capalbo A, Bvumbe J, Rienzi L, Ubaldi FM, Ogilvie C, Khalaf Y, Ilic D. Developmental clock compromises human twin model created by embryo splitting. Hum Reprod. 2015b;30(12):2774-84. http://dx.doi.org/10.1093/humrep/dev252. PMid:26489438.

Norris RP, Ratzan WJ, Freudzon M, Mehlmann LM, Krall J, Movsesian MA, Wang H, Ke H, Nikolaev VO, Jaffe LA. Cyclic GMP from the surrounding somatic cells regulates cyclic AMP and meiosis in the mouse oocyte. Development. 2009;136(11):1869-78. http://dx.doi.org/10.1242/dev.035238. PMid:19429786.

Nowshari MA, Holtz W. Transfer of split goat embryos without zonae pellucidae either fresh or after freezing. J Anim Sci. 1993;71(12):3403-8. http://dx.doi.org/10.2527/1993.71123403x. PMid:8294294.

Nurse P. Universal control mechanism regulating onset of M-phase. Nature. 1990;344(6266):503-8. http://dx.doi.org/10.1038/344503a0. PMid:2138713.

Oliver MH, Jaquiery AL, Kenyon PR, Pain SJ, Jenkinson CM, Blair HT, Derraik JG, Bloomfield FH. Maternal insulin sensitivity in midpregnancy does not determine birth weight after embryo transfer between large and small breed sheep. Domest Anim Endocrinol. 2015;50:50-4. http://dx.doi.org/10.1016/j.domaniend.2014.08.001. PMid:25254312.

Ollikainen M, Smith KR, Joo EJH, Ng HK, Andronikos R, Novakovic B, Aziz NKA, Carlin JB, Morley R, Saffery R, Craig JM. DNA methylation analysis of multiple tissues from newborn twins reveals both genetic and intrauterine components to variation in the human neonatal epigenome. Hum Mol Genet. 2010;19(21):4176-88. http://dx.doi.org/10.1093/hmg/ddq336. PMid:20699328.

Omidi M, Khalili MA, Halvaei I, Montazeri F, Kalantar SM. Quality of blastocysts created by embryo splitting: a time-lapse monitoring and chromosomal aneuploidy study. Cell J. 2020;22(3):367-74. PMid:31863663.

Oppenheim SM, Moyer AL, BonDurant RH, Rowe JD, Anderson GB. Successful pregnancy in goats carrying their genetically identical conceptus. Theriogenology. 2000;54(4):629-39. http://dx.doi.org/10.1016/S0093-691X(00)00378-2. PMid:11071137.

Otsuki J, Iwasaki T, Katada Y, Sato H, Furuhashi K, Tsuji Y, Matsumoto Y, Shiotani M. Grade and looseness of the inner cell mass may lead to the development of monochorionic diamniotic twins. Fertil Steril. 2016;106(3):640-4. http://dx.doi.org/10.1016/j.fertnstert.2016.05.007. PMid:27264045.

Ozawa M, Nagai T, Somfai T, Nakai M, Maedomari N, Fahrudin M, Karja NW, Kaneko H, Noguchi J, Ohnuma K, Yoshimi N, Miyazaki H, Kikuchi K. Comparison between effects of 3-isobutyl-1-methylxanthine and FSH on gap junctional communication, LH receptor expression, and meiotic maturation in cumulus-oocyte complexes in pigs. Mol Reprod Dev. 2008;75(5):857-66. http://dx.doi.org/10.1002/mrd.20820. PMid:18022826.

Ozdzeński W, Szczesny EAK, Tarkowski AK. Postimplantation development of mouse blastocysts with two separate inner cell masses. Anat Embryol. 1997;195(5):467-71. PMid:9176669.

Özgüç Ö, Maître JL. Multiscale morphogenesis of the mouse blastocyst by actomyosin contractility. Curr Opin Cell Biol. 2020;66:123-9. http://dx.doi.org/10.1016/j.ceb.2020.05.002. PMid:32711300.

Ozil JP, Heyman Y, Renard JP. Production of monozygotic twins by micromanipulation and cervical transfer in the cow. Vet Rec. 1982;110(6):126-7. http://dx.doi.org/10.1136/vr.110.6.126. PMid:6892266.

Paepe C, Cauffman G, Verloes A, Sterckx J, Devroey P, Tournaye H, Liebaers I, Van de Velde H. Human trophectoderm cells are not yet committed. Hum Reprod. 2013;28(3):740-9. http://dx.doi.org/10.1093/humrep/des432. PMid:23257394.

Pan LZ, Zhu S, Zhang M, Sun MJ, Lin J, Chen F, Tan JH. A new classification of the germinal vesicle chromatin configurations in pig oocytes. Biol Reprod. 2018;99(6):1149-58. http://dx.doi.org/10.1093/biolre/ioy139. PMid:29912286.

Park CH, Jeong YH, Lee DK, Hwang JY, Uh KJ, Yeom SC, Ahn C, Lee CK. Availability of empty zona pellucida for generating embryonic chimeras. PLoS One. 2015;10(4):e0123178. http://dx.doi.org/10.1371/journal.pone.0123178. PMid:25919298.

Park JY, Su YQ, Ariga M, Law E, Jin SL, Conti M. EGF-like growth factors as mediators of LH action in the ovulatory follicle. Science. 2004;303(5658):682-4. http://dx.doi.org/10.1126/science.1092463. PMid:14726596.

Payne D, Okuda A, Wakatsuki Y, Takeshita C, Iwata K, Shimura T, Yumoto K, Ueno Y, Flaherty S, Mio Y. Time-lapse recording identifies human blastocysts at risk of producing monzygotic twins. Hum Reprod. 2007;22(Suppl 1):i9-10.

Peere S, Papas M, Gerits I, Van den Branden E, Smits K, Govaere J. Management of monozygotic twins in the mare. J Equine Vet Sci. 2022;113:103988. http://dx.doi.org/10.1016/j.jevs.2022.103988.

Peramo B, Ricciarelli E, Cuadros‐Fernandez JM, Huguet E, Hernandez ER. Blastocyst transfer and monozygotic twinning. Fertil Steril. 1999;72(6):1116-7. http://dx.doi.org/10.1016/S0015-0282(99)00412-4. PMid:10593392.

Perry ACF, Asami M, Lam BYH, Yeo GSH. The initiation of mammalian embryonic transcription: to begin at the beginning. Trends Cell Biol. Forthcoming 2022. http://dx.doi.org/10.1016/j.tcb.2022.08.008. PMid:36182534.

Peugnet P, Wimel L, Duchamp G, Sandersen C, Camous S, Guillaume D, Dahirel M, Dubois C, Reigner F, Berthelot V, Chaffaux S, Tarrade A, Serteyn D, Chavatte-Palmer P. Enhanced or reduced fetal growth induced by embryo transfer into smaller or larger breeds alters postnatal growth and metabolism in weaned horses. J Equine Vet Sci. 2017;48:143-53.e2. http://dx.doi.org/10.1016/j.jevs.2016.03.016.

Pincus G, Enzmann EV. The comparative behavior of mammalian eggs in vivo and in vitro. 1. The activation of ovarian eggs. J Exp Med. 1935;62(5):665-75. http://dx.doi.org/10.1084/jem.62.5.665. PMid:19870440.

Pinkert CA, Kooyman DL, Baumgartner A, Keisler DH. In-vitro development of zygotes from superovulated prepubertal and mature gilts. J Reprod Fertil. 1989;87(1):63-6. http://dx.doi.org/10.1530/jrf.0.0870063. PMid:2621715.

Planterose Jiménez B, Liu F, Caliebe A, Montiel González D, Bell JT, Kayser M, Vidaki A. Equivalent DNA methylation variation between monozygotic co-twins and unrelated individuals reveals universal epigenetic inter-individual dissimilarity. Genome Biol. 2021;22(1):18. http://dx.doi.org/10.1186/s13059-020-02223-9. PMid:33402197.

Prather RS, First NL. Reprograming of murine blastocoele formation. J Exp Zool. 1986;237(3):347-50. http://dx.doi.org/10.1002/jez.1402370307. PMid:3701291.

Pratt HPM, Chakraborty J, Surani MAH. Molecular and morphological differentiation of the mouse blastocyst after manipulations of compaction with cytochalasin D. Cell. 1981;26(2):P279-92. http://dx.doi.org/10.1016/0092-8674(81)90310-X. PMid:7332931.

Prochazka R, Blaha M. Regulation of mitogen-activated protein kinase 3/1 activity during meiosis resumption in mammals. J Reprod Dev. 2015;61(6):495-502. http://dx.doi.org/10.1262/jrd.2015-069. PMid:26688146.

Prochazka R, Kalab P, Nagyova E. Epidermal growth factor-receptor tyrosine kinase activity regulates expansion of porcine oocyte-cumulus cell complexes in vitro. Biol Reprod. 2003;68(3):797-803. http://dx.doi.org/10.1095/biolreprod.102.005520. PMid:12604628.

Procházka R, Sršeň V, Nagyová E, Miyano T, Flechon JE. Developmental regulation of effect of epidermal growth factor on porcine oocyte-cumulus complexes: nuclear maturation, expansion, and F-actin remodeling. Mol Reprod Dev. 2000;56(1):63-73. http://dx.doi.org/10.1002/(SICI)1098-2795(200005)56:1<63::AID-MRD8>3.0.CO;2-D. PMid:10737968.

Prodöhl PA, Loughry WJ, McDonough CM, Nelson WS, Avise JC. Molecular documentation of polyembryony and the micro-spatial dispersion of clonal sibships in the nine-banded armadillo, Dasypus novemcinctus. Proc Biol Sci. 1996;263(1377):1643-9. http://dx.doi.org/10.1098/rspb.1996.0240. PMid:9025312.

Reichelt B, Niemann H. Generation of identical twin piglets following bisection of embryos at the morula and blastocyst stage. J Reprod Fertil. 1994;100(1):163-72. http://dx.doi.org/10.1530/jrf.0.1000163. PMid:8182585.

Rho GJ, Johnson WH, Betteridge KJ. Cellular composition and viability of demi- and quarter-embryos made from bisected bovine morulae and blastocysts produced in vitro. Theriogenology. 1998;50(6):885-95. http://dx.doi.org/10.1016/S0093-691X(98)00193-9. PMid:10734461.

Rice C, McGaughey RW. Effect of testosterone and dibutyryl cAMP on the spontaneous maturation of pig oocytes. J Reprod Fertil. 1981;62(1):245-56. http://dx.doi.org/10.1530/jrf.0.0620245. PMid:6262508.

Ritter LJ, Sugimura S, Gilchrist B. Oocyte induction of EGF responsiveness in somatic cells is associated with the acquisition of porcine oocyte developmental competence. Endocrinology. 2015;156(6):2299-312. http://dx.doi.org/10.1210/en.2014-1884. PMid:25849729.

Roberts MA, London K, Campos-Chillón LF, Altermatt JL. Presumed monozygotic twins develop following transfer of an in vitro-produced equine embryo. J Equine Sci. 2015;26(3):89-94. http://dx.doi.org/10.1294/jes.26.89. PMid:26435682.

Robinson JW, Zhang M, Shuhaibar LC, Norris RP, Geerts A, Wunder F, Eppig JJ, Potter LR, Jaffe LA. Luteinizing hormone reduces the activity of the NPR2 guanyl cyclase in mouse ovarian follicles, contributing to the cyclic GMP decrease that promotes resumption of meiosis in oocytes. Dev Biol. 2012;366(2):308-16. http://dx.doi.org/10.1016/j.ydbio.2012.04.019. PMid:22546688.

Rogberg-Muñoz A, Castillo NS, Zappa ME, Crespi JA, Villegas-Castagnasso EE, Gómez PM, Peral-García P, Giovambattista G. Naturally monozygotic quadruplets in a Braford cow confirmed by DNA analysis: a case report. Reprod Domest Anim. 2020;55(9):1267-70. http://dx.doi.org/10.1111/rda.13778. PMid:32688438.

Rokas A, Mesiano S, Tamam O, LaBella A, Zhang G, Muglia L. Developing a theoretical evolutionary framework to solve the mystery of parturition initiation. eLife. 2020;9:e58343. http://dx.doi.org/10.7554/eLife.58343. PMid:33380346.

Rowson LE, Moor R. Occurrence and development of identical twins in sheep. Nature. 1964;201(4918):521-2. http://dx.doi.org/10.1038/201521a0. PMid:14164644.

Rüther M, Meinecke-Tillmann S, Gehring M, Hausschulte H, Meinecke B. Assisted hatching in bovine embryos in commercial embryo transfer programs with respect to embryo quality and thickness of zona pellucida. Am Embryo Transfer Assoc [Internet]. 2002 [cited 2023 Jun 12];17(4):5-6. Available from: https://www.aeta.org/newsletters/fall_2002.pdf

Rüther M. Experimental investigation on assisted hatching of bovine embryos in commercial embryo transfer [dissertation]. Hannover: University of Veterinary Medicine Hannover; 2005. German.

Sadler TW. Langman’s medical embryology. 12th ed. Philadelphia: Lippincott Williams & Wilkins; 2012. Chapter 8, Third month to birth: The fetus and placenta; p. 96-116.

Santiquet N, Papillon-Dion É, Djender N, Guillemette C, Richard FJ. New elements in the c-type natriuretic peptide signaling pathway inhibiting swine in vitro oocyte meiotic resumption. Biol Reprod. 2014;91(1):16. http://dx.doi.org/10.1095/biolreprod.113.114132. PMid:24899572.

Santiquet N, Robert C, Richard J. The dynamics of connexin expression, degradation and localisation are regulated by gonadotropins during the early stages of in vitro maturation of swine oocytes. PLoS One. 2013;8(7):e68456. http://dx.doi.org/10.1371/journal.pone.0068456. PMid:23861906.

Santiquet NW, Develle Y, Laroche A, Robert C, Richard FJ. Regulation of gap-junctional communication between cumulus cells during in vitro maturation in swine, a gap-FRAP study. Biol Reprod. 2012;87(2):46. http://dx.doi.org/10.1095/biolreprod.112.099754. PMid:22649071.

Saragusty J, Ajmone-Marsan P, Sampino S, Modlinski JA. Reproductive biotechnology and critically endangered species: merging in vitro gametogenesis with inner cell mass transfer. Theriogenology. 2020;155:176-84. http://dx.doi.org/10.1016/j.theriogenology.2020.06.009. PMid:32702562.

Sasseville M, Côté N, Guillemette C, Richard FJ. New insight into the role of phophodiesterase 3A in porcine oocyte maturation. BMC Dev Biol. 2006;6(1):47. http://dx.doi.org/10.1186/1471-213X-6-47. PMid:17038172.

Sasseville M, Gagnon MC, Guillemette C, Sullivan R, Gilchrist RB, Richard F. Regulation of gap junctions in porcine cumulus-oocyte complexes: contributions of granulosa cell contact, gonadotropins and lipid rafts. Mol Endocrinol. 2009;23(5):700-10. http://dx.doi.org/10.1210/me.2008-0320. PMid:19228792.

Scaravelli G, Pisaturo V, Setti PEL, Ubaldi FM, Livi C, Borini A, Greco E, Villani MT, Coccia ME, Revelli A, Ricci G, Fusi F, Costa M, Migliorati E, Luca R, Vigiliano V, Bolli S, Reschini M. Monozygotic twin rate among ART centers: a multicenter analysis of data from 18 Italian units. J Assist Reprod Genet. 2022;39(10):2349-54. http://dx.doi.org/10.1007/s10815-022-02603-z. PMid:36053372.

Schiewe MC, Araujo E Jr, Asch RH, Balmaceda JP. Enzymatic characterization of zona pellucida hardening in human eggs and embryos. J Assist Reprod Genet. 1995;12(1):2-7. http://dx.doi.org/10.1007/BF02214120. PMid:7580004.

Schiewe MC, Whitney JB, Anderson RE. Potential risk of monochorionic dizygotic twin blastocyst formation associated with early laser zona dissection of group cultured embryos. Fertil Steril. 2015;103(2):417-21. http://dx.doi.org/10.1016/j.fertnstert.2014.11.009. PMid:25516079.

Schmoll F, Schneider H, Montag M, Wimmers K, Rink K, Schellander K. Effects of different laser-drilled openings in the zona pellucida on hatching of in vitro produced cattle blastocysts. Fertil Steril. 2003;80(Suppl 2):714-9. http://dx.doi.org/10.1016/S0015-0282(03)00989-0. PMid:14505744.

Schramm RD, Paprocki AM. In vitro development and cell allocation following aggregation of split embryos with tetraploid or developmentally asynchronous blastomeres in rhesus monkeys. Cloning Stem Cells. 2004;6(3):302-14. http://dx.doi.org/10.1089/clo.2004.6.302. PMid:15678605.

Seike N, Sakai M, Kanagawa H. Development of frozen-thawed demi-embryos and production of identical twin calves of different ages. J Vet Med Sci. 1991;53(1):37-42. http://dx.doi.org/10.1292/jvms.53.37. PMid:1830778.

Setiadi MA, Trumpa M, Rath D, Meinecke B. Elevated histone H1 (MPF) and mitogenn-activated protein kinase activities in pig oocytes following in vitro maturation do not indicate cytoplasmic maturation. Reprod Domest Anim. 2009;44(2):235-40. http://dx.doi.org/10.1111/j.1439-0531.2007.01041.x. PMid:19323796.

Sharma RK, Blair HT, Jenkinson CMC, Kenyon PR, Cockrem JF, Parkinson TJ. Uterine environment as a regulator of birth weight and body dimensions of newborn lambs. J Anim Sci. 2012;90(4):1338-48. http://dx.doi.org/10.2527/jas.2010-3800. PMid:22079991.

Shi W, Jin L, Liu J, Zhang C, Mi Y, Shi J, Wang H, Liang X. Blastocyst morphology is associated with the incidence of monozygotic twinning in assisted reproductive technology. Am J Obstet Gynecol. 2021;225(6):654.e1-16. http://dx.doi.org/10.1016/j.ajog.2021.06.101. PMid:34245681.

Shimada M, Maeda T, Terada T. Dynamic changes of connexin-43, gap junctional protein, in outer layers of cumulus cells are regulated by PKC and PI 3-kinase during meiotic resumption in porcine oocytes. Biol Reprod. 2001;64(4):1255-63. http://dx.doi.org/10.1095/biolreprod64.4.1255. PMid:11259274.

Shimada M, Nishibori M, Isobe N, Kawano N, Terada T. Luteinizing hormone receptor formation in cumulus cells surrounding porcine oocytes and its role during meiotic maturation of porcine oocytes. Biol Reprod. 2003;68(4):1142-9. http://dx.doi.org/10.1095/biolreprod.102.010082. PMid:12606491.

Shimaoka T, Nishimura T, Kano K, Naito K. Critical effect of pigWee1B on the regulation of meiotic resumption in porcine immature oocytes. Cell Cycle. 2009;8(15):2375-84. http://dx.doi.org/10.4161/cc.8.15.9073. PMid:19633431.

Shuhaibar LC, Egbert JR, Norris RP, Lampe PD, Nikolaev VO, Thunemann M, Wen L, Feil R, Jaffe LA. Intercellular signaling via cyclic GMP diffusion through gap junctions restarts meiosis in mouse ovarian follicles. Proc Natl Acad Sci USA. 2015;112(17):5527-32. http://dx.doi.org/10.1073/pnas.1423598112. PMid:25775542.

Sidrat T, Khan AA, Idrees M, Joo MD, Xu L, Lee KL, Kong IK. Role of Wnt signaling during in-vitro bovine blastocyst development and maturation in synergism with PPARδ signaling. Cells. 2020;9(4):923. http://dx.doi.org/10.3390/cells9040923. PMid:32283810.

Sills ES, Tucker MJ, Palermo GD. Assisted reproductive technologies and monozygous twins: implications for future study and clinical practice. Twin Res. 2000;3(4):217-23. http://dx.doi.org/10.1375/twin.3.4.217. PMid:11463142.

Silva del Río N, Kirkpatrick BW, Fricke PM. Observed frequency of monozygotic twinning in Holstein dairy cattle. Theriogenology. 2006;66(5):1292-9. http://dx.doi.org/10.1016/j.theriogenology.2006.04.013. PMid:16766024.

Silvestri G, Turner KJ, Silcock JL, Sinclair KD, Griffin DK. Effects of single or serial embryo splitting on the development and morphokinetics of in vitro produced bovine embryos. Eur Zool J. 2022;89(1):680-9. http://dx.doi.org/10.1080/24750263.2022.2077994.

Skidmore J, Boyle MS, Cran D, Allen WR. Micromanipulation of equine embryos to produce monozygotic twins. Equine Vet J. 1989;21(Suppl 8):126-8. http://dx.doi.org/10.1111/j.2042-3306.1989.tb04696.x.

Skrzyszowska M, Smorąg Z, Kątska L, Bochenek M. Cattle twins after transfer of demi-embryos derived from zona-perforated blastocysts. J Anim Feed Sci. 1999;8(2):223-31. http://dx.doi.org/10.22358/jafs/68841/1999.

Skrzyszowska M, Smorąg Z, Kątska L. Demi-embryo production from hatching of zona-drilled bovine and rabbit blastocysts. Theriogenology. 1997;48(4):551-7. http://dx.doi.org/10.1016/S0093-691X(97)00272-0. PMid:16728151.

Smidt D, Steinbach J, Scheven B. Reziproke Eitransplantationen zwischen deutschen veredelten Landschweinen und Zwergschweinen. Reprod Dom Anim. 1966;1(4):156-66. http://dx.doi.org/10.1111/j.1439-0531.1966.tb00031.x. German.

Smith SD, Schmidt M, Greve T. Transfer of bisected cattle embryos within the same zona pellucida. Reprod Domest Anim. 1991;26(2):91-3. http://dx.doi.org/10.1111/j.1439-0531.1991.tb01523.x.

Soede NM, Hazeleger W, Kemp B. Follicle size and the process of ovulation in sows as studied with ultrasound. Reprod Domest Anim. 1998;33(3-4):239-44. http://dx.doi.org/10.1111/j.1439-0531.1998.tb01350.x.

Soede NM, Helmond FA, Kemp B. Periovulatory profiles of oestradiol, LH and progesterone in relation to oestrus and embryo mortality in multiparous sows using transrectal ultrasonography to detect ovulation. J Reprod Fertil. 1994;101(3):633-41. http://dx.doi.org/10.1530/jrf.0.1010633. PMid:7966019.

Soede NM, Langendijk P, Kemp B. Reproductive cycles in pigs. Anim Reprod Sci. 2011;124(3-4):251-8. http://dx.doi.org/10.1016/j.anireprosci.2011.02.025. PMid:21397415.

Solomon MJ, Lee T, Kirschner MW. Role of phosphorylation in p34cdc2 activation: identification of activating kinase. Mol Biol Cell. 1992;3(1):13-27. http://dx.doi.org/10.1091/mbc.3.1.13. PMid:1532335.

Song J, Zhang J, Yuan X, Liu B, Tao W, Zhang C, Wu K. Functional substitution of zona pellucida with modified sodium hyaluronate gel in human embryos. J Assist Reprod Genet. 2022;39(11):2669-76. http://dx.doi.org/10.1007/s10815-022-02609-7. PMid:36094700.

Spalding JF, Berry RO, Moffit JG. The maturation process of the ovum of swine during normal and induced ovulations. J Anim Sci. 1955;14(3):609-20. http://dx.doi.org/10.1093/ansci/14.3.609.

Steinbach J, Smidt D, Scheven B. Untersuchungen über den mütterlichen Einfluß auf die prä- und postnatale Entwicklung von Schweinen extrem unterschiedlicher Größe. II. Das Wachstum von Deutschen veredelten Landschweinen nach reziproker Transplantation befruchteter Eier. J Anim Breed Genet. 1967;83:312-30. German.

Steinman G. Mechanism of twinning IV. Sex preference and lactation. J Reprod Med. 2001;46(11):1003-7. PMid:11762143.

Stern MS, Wilson IB. Experimental studies on the organization of the preimplantation mouse embryo. I. Fusion of asynchronously cleaving eggs. J Embryol Exp Morphol. 1972;28(2):247-54. PMid:4674565.

Strand J, Thomsen H, Jensen JB, Marcussen C, Nicolajsen TB, Skriver MB, Søgaard IM, Ezaz T, Purup S, Callesen H, Pertoldi C. Biobanking in amphibian and reptilian conservation and management: opportunities and challenges. Conserv Genet Resour. 2020;12(4):709-25. http://dx.doi.org/10.1007/s12686-020-01142-y.

Su YQ, Nyegaard M, Overgaard MT, Qiao J, Giudice LC. Participation of mitogen-activated protein kinase in luteinizing hormone-induced differential regulation of steroidogenesis and steroidogenic gene expression in mural and cumulus granulosa cell of mouse preovulatory follicles. Biol Reprod. 2006;75(6):859-67. http://dx.doi.org/10.1095/biolreprod.106.052613. PMid:16943367.

Subira J, Craig J, Turner K, Bevan A, Ohuma E, McVeigh E, Child T, Fatum M. Grade of the inner cell mass, but not trophectoderm, predicts live birth in fresh blastocyst single transfers. Hum Fertil. 2016;19(4):254-61. http://dx.doi.org/10.1080/14647273.2016.1223357. PMid:27624529.

Sumiyama K, Matsumoto N, Garçon-Yoshida J, Ukai H, Ueda HR, Tanaka Y. Easy and efficient production of completely embryonic-stem-cell-derived mice using a micro-aggregation device. PLoS One. 2018;13(9):e0203056. http://dx.doi.org/10.1371/journal.pone.0203056. PMid:30231034.

Sun M-J, Zhu S, Li Y-W, Lin J, Gong S, Jiao GZ, Chen F, Tan JH. An essential role for the intra-oocyte MAPK activity in the NSN-to-SN transition of germinal vesicle chromatin configuration in porcine oocytes. Sci Rep. 2016;6(1):23555. http://dx.doi.org/10.1038/srep23555. PMid:27009903.

Sun XS, Liu Y, Yue KZ, Ma SF, Tan JH. Changes in germinal vesicle (GV) chromatin configurations during growth and maturation of porcine oocytes. Mol Reprod Dev. 2004;69(2):228-34. http://dx.doi.org/10.1002/mrd.20123. PMid:15293225.

Sundaram V, Ribeiro S, Noel M. Multi-chorionic pregnancies following single embryo transfer at the blastocyst stage: a case series and review of the literature. J Assist Reprod Genet. 2018;35(12):2109-17. http://dx.doi.org/10.1007/s10815-018-1329-8. PMid:30362060.

Sutherland K, Leitch J, Lyall H, Woodward BJ. Time-lapse imaging of inner cell mass splitting with monochorionic triamniotic triplets after elective single embryo transfer: a case report. Reprod Biomed Online. 2019;38(4):491-6. http://dx.doi.org/10.1016/j.rbmo.2018.12.017. PMid:30850321.

Swain JE. Fused blastocysts as a consequence of group embryo culture: observations, complications, and potential solutions. F&S Reports. 2021;2(1):133-5. http://dx.doi.org/10.1016/j.xfre.2020.10.010. PMid:34223285.

Tarkowski AK, Jagiello K, Czolowska R, Ozdzenski W. Mouse chimaeras developed from electrofused blastocysts: new evidence for developmental plasticity of the inner cell mass. Int J Dev Biol. 2005;49(8):909-14. http://dx.doi.org/10.1387/ijdb.052017at. PMid:16281168.

Tarkowski AK, Suwińska A, Czołowska R, Ożdżeński W. Individual blastomeres of 16- and 32-cell mouse embryos are able to develop into foetuses and mice. Dev Biol. 2010;348(2):190-8. http://dx.doi.org/10.1016/j.ydbio.2010.09.022. PMid:20932967.

Tarkowski AK, Wojewodzka M. A method for obtaining chimaeric mouse blastocysts with two separate inner cell masses: a preliminary report. J Embryol Exp Morphol. 1982;71(1):215-21. http://dx.doi.org/10.1242/dev.71.1.215. PMid:6296260.

Tarkowski AK, Wroblewska J. Development of blastomeres of mouse eggs isolated at the 4- and 8-cell stage. J Embryol Exp Morphol. 1967;18(1):155-80. http://dx.doi.org/10.1242/dev.18.1.155. PMid:6048976.

Tarkowski AK. Experimental studies on regulation in the development of isolated blastomeres of mouse eggs. Acta Theriol. 1959;3:191-267 plate 12-27. http://dx.doi.org/10.4098/AT.arch.59-11.

Tischner M, Klimczak M. The development of Polish ponies born after embryo transfer to large recipients. Equine Vet J. 1989;21(S8):62-3. http://dx.doi.org/10.1111/j.2042-3306.1989.tb04676.x.

Tischner M. Development of Polish-pony foals born after embryo transfer to large mares. J Reprod Fertil. 1987;35:705-9.

Trounson AO, Moore NW. Attempts to produce identical offspring in sheep by mechanical division of the ovum. Aust J Biol Sci. 1974;27(5):505-10. http://dx.doi.org/10.1071/BI9740505. PMid:4447494.

Tsafriri A, Channing CP. Influence of follicular maturation and culture conditions on the meiosis of pig oocytes in vitro. J Reprod Fertil. 1975;43(1):149-52. http://dx.doi.org/10.1530/jrf.0.0430149. PMid:1127632.

Tsafriri A, Motola S. Are steroids dispensable for meiotic resumption in mammals? Trends Endocrinol Metab. 2007;18(8):321-7. http://dx.doi.org/10.1016/j.tem.2007.08.005. PMid:17826173.

Tsunoda Y, McLaren A. Effect of various procedures on the viability of mouse embryos containing half the normal number of blastomeres. J Reprod Fertil. 1983;69(1):315-22. http://dx.doi.org/10.1530/jrf.0.0690315. PMid:6887141.

Tsunoda Y, Tokunaga T, Sugie T, Katsumata M. Production of monozygotic twins following the transfer of bisected embryos in the goats. Theriogenology. 1985;24(3):337-43. http://dx.doi.org/10.1016/0093-691X(85)90225-0. PMid:16726087.

Tsunoda Y, Yasui T, Okubo Y, Nakamura K, Sugie T. Development of one or two blastomeres from eight-cell mouse embryos to term in the presence of parthenogenetic eggs. Theriogenology. 1987;28(5):615-23. http://dx.doi.org/10.1016/0093-691X(87)90278-0. PMid:16726344.

Udy GB. Commercial splitting of goat embryos. Theriogenology. 1987;28(6):837-47. http://dx.doi.org/10.1016/0093-691X(87)90035-5.

Ueno S, Kurome M, Tomii R, Hiruma K, Saitoh H, Nagashima H. Association between embryonic loss and damage to the zona pellucida by invasive micromanipulation during oviductal transfer of early-stage embryos in pigs. J Reprod Dev. 2007;53(5):1113-8. http://dx.doi.org/10.1262/jrd.19063. PMid:17598954.

Urrego R, Rodriguez-Osorio N, Niemann H. Epigenetic disorders and altered gene expression after use of Assisted Reproductive Technologies in domestic cattle. Epigenetics. 2014;9(6):803-15. http://dx.doi.org/10.4161/epi.28711. PMid:24709985.

Vaccari S, Horner K, Mehlmann LM, Conti M. Generation of mouse oocytes defective in cAMP synthesis and degradation: endogenous cyclic AMP is essential for meiotic arrest. Dev Biol. 2008;316(1):124-34. http://dx.doi.org/10.1016/j.ydbio.2008.01.018. PMid:18280465.

Van de Velde H, Cauffman G, Tournaye H, Devroey P, Liebaers I. The four blastomeres of a 4-cell stage human embryo are able to develop individually into blastocysts with inner cell mass and trophectoderm. Hum Reprod. 2008;23(8):1742-7. http://dx.doi.org/10.1093/humrep/den190. PMid:18503052.

Van Dongen J, Gordon SD, McRae AF, Odintsova VV, Mbarek H, Breeze CE, Sugden K, Lundgren S, Castillo-Fernandez JE, Hannon E, Moffitt TE, Hagenbeek FA, van Beijsterveldt CEM, Jan Hottenga J, Tsai PC, Min JL, Hemani G, Ehli EA, Paul F, Stern CD, Heijmans BT, Slagboom PE, Daxinger L, van der Maarel SM, Geus EJC, Willemsen G, Montgomery GW, Reversade B, Ollikainen M, Kaprio J, Spector TD, Bell JT, Mill J, Caspi A, Martin NG, Boomsma DI. Identical twins carry a persistent epigenetic signature of early genome programming. Nat Commun. 2021;12(1):5618. http://dx.doi.org/10.1038/s41467-021-25583-7. PMid:34584077.

Van Langendonckt A, Wyns C, Godin PA, Toussaint-Demylle D, Donnez J. Atypical hatching of a human blastocyst leading to monozygotic twinning: a case report. Fertil Steril. 2000;74(5):1047-50. http://dx.doi.org/10.1016/S0015-0282(00)01554-5. PMid:11056259.

Velasquez AE, Castro FO, Veraguas D, Cox JF, Lara E, Briones M, Rodriguez-Alvarez L. Splitting of IVP bovine blastocyst affects morphology and gene expression of resulting demi-embryos during in vitro culture and in vivo elongation. Zygote. 2016;24(1):18-30. http://dx.doi.org/10.1017/S0967199414000677. PMid:25496989.

Velásquez AE, Manríquez J, Castro FO, Cox JF, Rodriguez-Alvarez L. Embryo splitting affects the transcriptome during elongation stage of in vitro-produced bovine blastocysts. Theriogenology. 2017;87:124-34. http://dx.doi.org/10.1016/j.theriogenology.2016.08.014. PMid:27641677.

Velásquez AE, Manriquez JR, Castro FO, Rodriguez-Alvarez LI. Effect of zona pellucida removal on early development of in vitro produced bovine embryos. Arch Med Vet. 2013;45(1):7-15. http://dx.doi.org/10.4067/S0301-732X2013000100003.

Voelkel SA, Viker SD, Johnson CA, Hill KJ, Humes PE, Godke RA. Multiple embryotransplant offspring produced from quartering a bovine embryo at the morula stage. Vet Rec. 1985;117(20):528-30. http://dx.doi.org/10.1136/vr.117.20.528. PMid:4082414.

Wang Q, Ulker A, Wang H, Wu B, Yang A, Attia GR. Single live birth derived from conjoined oocytes using laser cutting technique: a case report. Zygote. 2022;30(2):217-20. http://dx.doi.org/10.1017/S0967199421000526. PMid:34313206.

Warfield SJ, Seidel GE Jr, Elsden RP. Transfer of bovine demi-embryos with and without the zona pellucida. J Anim Sci. 1987;65(3):756-61. http://dx.doi.org/10.2527/jas1987.653756x. PMid:3667439.

Wassmuth R, Meinecke-Tillmann S. Einsatzmöglichkeiten identischer Zwillinge in der Forschung und Ergebnisse über gezielte Erzeugung beim Schaf. Der Tierzüchter. 1980;32:329-30. German.

Watanabe M, Hoshi K, Yazawa H, Yanagida K, Sato A. Use of the artificial zona pellucida made of calcium alginate in the development of preimplantation mouse embryo. J Mamm Ova Res. 1995;12(2):95-100. http://dx.doi.org/10.1274/jmor.12.95.

Wehrend A, Meinecke B. Kinetics of meiotic progression, M-phase promoting factor (MPF) and mitogen-activated protein kinase (MAP kinase) activities during in vitro maturation of porcine and bovine oocytes: species specific differences in the lenth of the meiotic stages. Anim Reprod Sci. 2001;66(3-4):175-84. http://dx.doi.org/10.1016/S0378-4320(01)00094-X. PMid:11348780.

Weppert M. Untersuchungen zur Nutzung genetisch identischer Zwillinge aus mikrochirurgischer Embryoteilung und von Klongruppen aus Kerntransfer in der Rinderzucht [dissertation]. Munich: Veterinary Faculty, Ludwig-Maximilians-Universität München; 2006. German.

Wiener-Megnazi Z, Fridman M, Koifman M, Lahav-Baratz S, Stein N, Auslender R, Dirnfeld M. Synchronous and asynchronous blastomere cleavage at cryopreservation: effect on subsequent embryo survival, pregnancy and live birth rates. J Biomed Sci Eng. 2014;7(5):243-51. http://dx.doi.org/10.4236/jbise.2014.75027.

Wiesak T, Hunter MG, Foxcroft GR. Differences in follicular morphology, steroidogenesis and oocyte maturation in naturally cyclic and PMSG/hCG-treated prepubertal gilts. J Reprod Fertil. 1990;89(2):633-41. http://dx.doi.org/10.1530/jrf.0.0890633. PMid:2401990.

Willadsen SM, Lehn-Jensen H, Fehilly CB, Newcomb R. The production of monozygotic twins of preselected parentage by micromanipulation of non-surgically collected cow embryos. Theriogenology. 1981;15(1):23-9. http://dx.doi.org/10.1016/S0093-691X(81)80015-5. PMid:16725537.

Willadsen SM, Polge C. Attempts to produce monozygotic quadruplets in cattle by blastomere separation. Vet Rec. 1981;108(10):211-3. http://dx.doi.org/10.1136/vr.108.10.211. PMid:6939169.

Willadsen SM. A method for culture of micromanipulated sheep embryos and its use to produce monozygotic twins. Nature. 1979;277(5694):298-300. http://dx.doi.org/10.1038/277298a0. PMid:570249.

Willadsen SM. The development capacity of blastomeres from 4- and 8-cell sheep embryos. J Embryol Exp Morphol. 1981;65:165-72. PMid:6895911.

Willadsen SM. The viability of early cleavage stages containing half the normal number of blastomeres in the sheep. J Reprod Fertil. 1980;59(2):357-62. http://dx.doi.org/10.1530/jrf.0.0590357. PMid:7431292.

Wolf JB, Wade MJ. What are maternal effects (and what are they not)? Philos Trans R Soc Lond B Biol Sci. 2009;364(1520):1107-15. http://dx.doi.org/10.1098/rstb.2008.0238. PMid:19324615.

Xiao Y, Amaral TF, Ross PJ, Soto DA, Diffenderfer KE, Pankonin AR, Jeensuk S, Tríbulo P, Hansen PJ. Importance of WNT-dependent signaling for derivation and maintenance of primed pluripotent bovine embryonic stem cells. Biol Reprod. 2021;105(1):52-63. http://dx.doi.org/10.1093/biolre/ioab075. PMid:33899086.

Yaacobi-Artzi S, Kalo D, Roth Z. Association between the morphokinetics of in-vitro-derived bovine embryos and the transcriptomic profile of the derived blastocysts. PLoS One. 2022;17(10):e0276642. http://dx.doi.org/10.1371/journal.pone.0276642. PMid:36288350.

Yamashita Y, Kawashima I, Gunji Y, Hishinuma M, Shimada M. Progesterone is essential for maintenance of Tace/Adam17 mRNA expression, but not EGF-like factor, in cumulus cells, which enhances the EGF receptor signaling pathway during in vitro maturation of porcine COCs. J Reprod Dev. 2010;56(3):315-23. http://dx.doi.org/10.1262/jrd.09-199H. PMid:20168049.

Yan Z, Liang H, Deng L, Long H, Chen H, Chai W, Suo L, Xu C, Kuang Y, Wu L, Lu S, Lyu Q. Eight-shaped hatching increases the risk of inner cell mass splitting in extended mouse embryo culture. PLoS One. 2015;10(12):e0145172. http://dx.doi.org/10.1371/journal.pone.0145172. PMid:26680631.

Yang CR, Wei Y, Qi ST, Chen L, Zhang QH, Ma JY, Luo YB, Wang YP, Hou Y, Schatten H, Liu ZH, Sun QY. The G protein coupled receptor 3 is involved in cAMP and cGMP signaling and maintenance of meiotic arrest in porcine oocytes. PLoS One. 2012;7(6):e38807. http://dx.doi.org/10.1371/journal.pone.0038807. PMid:22685609.

Yang X, Foote RH. Production of identical twin rabbits by micromanipulation of embryos. Biol Reprod. 1987;37(4):1007-14. http://dx.doi.org/10.1095/biolreprod37.4.1007. PMid:3689843.

Yániz JL, Santolaria P, López-Gatius F. In vitro development of bovine embryos encapsulated in sodium alginate. J Vet Med A Physiol Pathol Clin Med. 2002;49(8):393-5. http://dx.doi.org/10.1046/j.1439-0442.2002.00463.x. PMid:12450185.

Ye J, Flint APF, Luck MR, Campbell KHS. Independent activation of MAP kinase and MPF during the initiation of meiotic maturation in pig oocytes. Reproduction. 2003;125(5):645-56. http://dx.doi.org/10.1530/rep.0.1250645. PMid:12713427.

Zhang B, Ding J, Li Y, Wang J, Zhao Y, Wang W, Shi S, Dong F, Zhang Z, Shi F, Xu Y. The porcine Gpr3 gene: molecular cloning, characterization and expression level in tissues and cumulus-oocyte complexes during in vitro maturation. Mol Biol Rep. 2012;39(5):5831-9. http://dx.doi.org/10.1007/s11033-011-1393-y. PMid:22207171.

Zhang M, Su YQ, Sugiura K, Xia G, Eppig JJ. Granulosa cell ligand NPPC and its receptor NPR2 maintain meiotic arrest in mouse oocytes. Science. 2010;330(6002):366-9. http://dx.doi.org/10.1126/science.1193573. PMid:20947764.

Zhang W, Chen Q, Yang Y, Liu W, Zhang M, Xia G, Wang C. Epidermal growth factor-network signaling mediates luteinizing hormone regulation of BND and CNP and their receptor NPR2 during porcine oocyte meiotic resumption. Mol Reprod Dev. 2014;81(11):1030-41. http://dx.doi.org/10.1002/mrd.22424. PMid:25348585.

Zhang W, Yang Y, Liu W, Chen Q, Wang H, Wang X, Zhang Y, Zhang M, Xia G. Brain natriuretic peptide and C-type natriuretic peptide maintain porcine oocyte meiotic arrest. J Cell Physiol. 2015;230(1):71-81. PMid:24912131.

Zhang X, Li T, Zhang L, Jiang L, Cui T, Yuan X, Wang C, Liu Z, Zhang Y, Li W, Zhou Q. Individual blastomeres of 4- and 8-cell embryos have ability to develop into a full organism in mouse. J Genet Genomics. 2018;45(12):677-80. http://dx.doi.org/10.1016/j.jgg.2018.07.012. PMid:30581076.

Zhao XY, Li W, Lv Z, Liu L, Tong M, Hai T, Hao J, Guo CL, Ma QW, Wang L, Zeng F, Zhou Q. iPS cells produce viable mice through tetraploid complementation. Nature. 2009;461(7260):86-90. http://dx.doi.org/10.1038/nature08267. PMid:19672241.

Zhao XY, Li W, Lv Z, Liu L, Tong M, Hai T, Hao J, Wang X, Wang L, Zeng F, Zhou Q. Viable fertile mice generated from fully pluripotent iPS cells derived from adult somatic cells. Stem Cell Rev Rep. 2010;6(3):390-7. http://dx.doi.org/10.1007/s12015-010-9160-3. PMid:20549390.

Zheng YL, Jiang MX, OuYang YC, Sun QY, Chen DY. Production of mouse by inter-strain inner cell mass replacement. Zygote. 2005;13(1):73-7. http://dx.doi.org/10.1017/S0967199405003035. PMid:15984165.

Zhu M, Cornwall-Scoones J, Wang P, Handford CE, Na J, Thomson M, Zernicka-Goetz M. Developmental clock and mechanism of de novo polarization of the mouse embryo. Science. 2020;370(6522):eabd2703. http://dx.doi.org/10.1126/science.abd2703. PMid:33303584.
 


Submitted date:
03/31/2023

Accepted date:
06/12/2023

64b9689da9539558e8485144 animreprod Articles
Links & Downloads

Anim Reprod

Share this page
Page Sections