Animal Reproduction (AR)
https://www.animal-reproduction.org/article/doi/10.1590/1984-3143-AR2020-0069
Animal Reproduction (AR)
Thematic Section: 34th Annual Meeting of the Brazilian Embryo Technology Society (SBTE)

Placenta specific gene targeting to study histone lysine demethylase and androgen signaling in ruminant placenta

Taylor Kimberly Hord; Agata Maria Parsons Aubone; Asghar Ali; Hayley Nicole Templeton; River Evans; Jason Edward Bruemmer; Quinton Alexander Winger; Gerrit Jerry Bouma

Downloads: 1
Views: 669

Abstract

Abstract: Reproductive efficiency is critically dependent on embryo survival, establishment of a successful pregnancy and placental development. Recent advances in gene editing technology have enabled investigators to use gene knockdown and knockout approaches to better understand the role of hormone signaling in placental function and fetal growth and development. In this review, an overview of ruminant placentation will be provided, including recent data highlighting the role of histone lysine demethylase 1A and androgen signaling in ruminant placenta and pregnancy. Studies in ruminant placenta establish a role for histone lysine demethylase 1A in controlling genetic networks necessary for important cellular events such as cell proliferation and angiogenesis, as well as androgen receptor signaling during early placentation.

Keywords

KDM1A, androgen receptor, trophoblast cells, placenta

References

Ali A, Bouma GJ, Anthony RV, Winger QA. The role of LIN28-let-7-ARID3B pathway in placental development. Int J Mol Sci. 2020;21(10):3637. http://dx.doi.org/10.3390/ijms21103637. PMid:32455665.

Althoff K, Beckers A, Odersky A, Mestdagh P, Köster J, Bray IM, Bryan K, Vandesompele J, Speleman F, Stallings RL, Schramm A, Eggert A, Sprüssel A, Schulte JH. MiR-137 functions as a tumor suppressor in neuroblastoma by downregulating KDM1A. Int J Cancer. 2013;133(5):1064-73. http://dx.doi.org/10.1002/ijc.28091. PMid:23400681.

Baker CM, Goetzmann LN, Cantlon JD, Jeckel KM, Winger QA, Anthony RV. Development of ovine chorionic somatomammotropin hormone-deficient pregnancies. Am J Physiol Regul Integr Comp Physiol. 2016;310(9):R837-46. http://dx.doi.org/10.1152/ajpregu.00311.2015. PMid:26887431.

Barry JS, Anthony RV. The pregnant sheep as a model for human pregnancy. Theriogenology. 2008;69(1):55-67. http://dx.doi.org/10.1016/j.theriogenology.2007.09.021. PMid:17976713.

Beckett EM, Astapova O, Steckler TL, Veiga-Lopez A, Padmanabhan V. Developmental programing: impact of testosterone on placental differentiation. Reproduction. 2014;148(2):199-209. http://dx.doi.org/10.1530/REP-14-0055. PMid:24840528.

Burg JM, Link JE, Morgan BS, Heller FJ, Hargrove AE, McCafferty DG. KDM1 class flavin-dependent protein lysine demethylases. Biopolymers. 2015;104(4):213-46. http://dx.doi.org/10.1002/bip.22643. PMid:25787087.

Carson DD, Bagchi I, Dey SK, Enders AC, Fazleabas AT, Lessey BA, Yoshinaga K. Embryo implantation. Dev Biol. 2000;223(2):217-37. http://dx.doi.org/10.1006/dbio.2000.9767. PMid:10882512.

Chang C, Lee CO, Yeh S, Chang TM. Androgen receptor (AR) differential roles in hormone-related tumors including prostate, bladder, kidney, lung, breast and liver. Oncogene. 2014;33(25):3225-34. http://dx.doi.org/10.1038/onc.2013.274. PMid:23873027.

Chavatte-Palmer P, Tarrade A. Placentation in different mammalian species. Ann Endocrinol. 2016;77(2):67-74. http://dx.doi.org/10.1016/j.ando.2016.04.006. PMid:27155775.

Cleys ER, Halleran JL, Enriquez VA, Silveira JC, West RC, Winger QA, Anthony RV, Bruemmer JE, Clay CM, Bouma GJ. Androgen receptor and histone lysine demethylases in ovine placenta. PLoS One. 2015;10(2):e0117472. http://dx.doi.org/10.1371/journal.pone.0117472. PMid:25675430.

Diskin MG, Morris DG. Embryonic and early foetal losses in cattle and other ruminants. Reprod Domest Anim. 2008;43(Suppl 2):260-7. http://dx.doi.org/10.1111/j.1439-0531.2008.01171.x. PMid:18638133.

Forsdike RA, Hardy K, Bull L, Stark J, Webber LJ, Stubbs S, Robinson JE, Franks S. Disordered follicle development in ovaries of prenatally androgenized ewes. J Endocrinol. 2007;192(2):421-8. http://dx.doi.org/10.1677/joe.1.07097. PMid:17283242.

Garcia-Bassets I, Kwon YS, Telese F, Prefontaine GG, Hutt KR, Cheng CS, Ju BG, Ohgi KA, Wang J, Escoubet-Lozach L, Rose DW, Glass CK, Fu XD, Rosenfeld MG. Histone methylation-dependent mechanisms impose ligand dependency for gene activation by nuclear receptors. Cell. 2007;128(3):505-18. http://dx.doi.org/10.1016/j.cell.2006.12.038. PMid:17289570.

Gatea AO, Smith MF, Pohler KG, Egen T, Pereira MH, Vasconselos JLM, Lawrence JC, Green JA. The ability to predict pregnancy loss in cattle with ELISAs that detect pregnancy associated glycoproteins is antibody dependent. Theriogenology. 2018;108:269-76. http://dx.doi.org/10.1016/j.theriogenology.2017.12.021. PMid:29275034.

Georgiades P, Cox B, Gertsenstein M, Chawengsaksophak K, Rossant J. Trophoblast-specific gene manipulation using lentivirus-based vectors. Biotechniques. 2007;42(3):317-8. http://dx.doi.org/10.2144/000112341. PMid:17390538.

Grazul-Bilska AT, Johnson ML, Borowicz PP, Minten M, Bilski JJ, Wroblewski R, Velimirovich M, Coupe LR, Redmer DA, Reynolds LP. Placental development during early pregnancy in sheep: cell proliferation, global methylation, and angiogenesis in the fetal placenta. Reproduction. 2011;141(4):529-40. http://dx.doi.org/10.1530/REP-10-0505. PMid:21273368.

Guillomot M, Flechon JE, Leroy F. Clastocyst development and implantation. In: Thibault C, Levasseur MC, Hunter RHF, editors. Reproduction in mammals and man. Paris: Ellipses; 1993. p 387-411.

Husmann D, Gozani O. Histone lysine methyltransferases in biology and disease. Nat Struct Mol Biol. 2019;26(10):880-9. http://dx.doi.org/10.1038/s41594-019-0298-7. PMid:31582846.

Kelley AS, Puttabyatappa M, Ciarelli JN, Zeng L, Smith YR, Lieberman R, Pennathur S, Padmanabhan V. Prenatal testosterone excess disrupts placental function in a sheep model of polycystic ovary syndrome. Endocrinology. 2019;160(11):2663-72. http://dx.doi.org/10.1210/en.2019-00386. PMid:31436841.

Khatri P, Hoffmann B, Schuler G. Androgen receptor is widely expressed in bovine placentomes and up-regulated during differentiation of bovine trophoblast giant cells. Placenta. 2013;34(5):416-23. http://dx.doi.org/10.1016/j.placenta.2013.01.018. PMid:23481223.

Kumar S, Gordon GH, Abbott DH, Mishra JS. Androgens in maternal vascular and placental function: implications for preeclampsia pathogenesis. Reproduction. 2018;156(5):R155-67. http://dx.doi.org/10.1530/REP-18-0278. PMid:30325182.

Lim S, Janzer A, Becker A, Zimmer A, Schüle R, Buettner R, Kirfel J. Lysine-specific demethylase 1 (LSD1) is highly expressed in ER-negative breast cancers and a biomarker predicting aggressive biology. Carcinogenesis. 2010;31(3):512-20. http://dx.doi.org/10.1093/carcin/bgp324. PMid:20042638.

Maliqueo M, Echiburú B, Crisosto N. Sex steroids modulate uterine-placental vasculature: implications for obstetrics and neonatal outcomes. Front Physiol. 2016;7:152. http://dx.doi.org/10.3389/fphys.2016.00152. PMid:27199767.

McWhorter ES, West RC, Russ JE, Ali A, Winger QA, Bouma GJ. LIN28B regulates androgen receptor in human trophoblast cells through Let-7c. Mol Reprod Dev. 2019;86(9):1086-93. http://dx.doi.org/10.1002/mrd.23226. PMid:31215730.

Milano-Foster J, Ray S, Home P, Ganguly A, Bhattacharya B, Bajpai S, Pal A, Mason CW, Paul S. Regulation of human trophoblast syncytialization by histone demethylase LSD1. J Biol Chem. 2019;294(46):17301-13. http://dx.doi.org/10.1074/jbc.RA119.010518. PMid:31591264.

Nguyen PT, Conley AJ, Soboleva TK, Lee RS. Multilevel regulation of steroid synthesis and metabolism in the bovine placenta. Mol Reprod Dev. 2012;79(4):239-54. http://dx.doi.org/10.1002/mrd.22021. PMid:22431389.

Nottke A, Colaiácovo MP, Shi Y. Developmental roles of the histone lysine demethylases. Development. 2009;136(6):879-89. http://dx.doi.org/10.1242/dev.020966. PMid:19234061.

Padmanabhan V, Veiga-Lopez A, Abbott DH, Recabarren SE, Herkimer C. Developmental programming: impact of prenatal testosterone excess and postnatal weight gain on insulin sensitivity index and transfer of traits to offspring of overweight females. Endocrinology. 2010;151(2):595-605. http://dx.doi.org/10.1210/en.2009-1015. PMid:19966179.

Péqueux C, Raymond-Letron I, Blacher S, Boudou F, Adlanmerini M, Fouque MJ, Rochaix P, Noël A, Foidart JM, Krust A, Chambon P, Brouchet L, Arnal JF, Lenfant F. Stromal estrogen receptor-α promotes tumor growth by normalizing an increased angiogenesis. Cancer Res. 2012;72(12):3010-9. http://dx.doi.org/10.1158/0008-5472.CAN-11-3768. PMid:22523036.

Purcell SH, Cantlon JD, Wright CD, Henkes LE, Seidel GE Jr, Anthony RV. The involvement of proline-rich 15 in early conceptus development in sheep. Biol Reprod. 2009;81(6):1112-21. http://dx.doi.org/10.1095/biolreprod.109.076190. PMid:19605793.

Regnault TR, de Vrijer B, Galan HL, Davidsen ML, Trembler KA, Battaglia FC, Wilkening RB, Anthony RV. The relationship between transplacental O2 diffusion and placental expression of PlGF, VEGF and their receptors in a placental insufficiency model of fetal growth restriction. J Physiol. 2003;550(Pt 2):641-56. http://dx.doi.org/10.1113/jphysiol.2003.039511. PMid:12740423.

Regnault TR, Galan HL, Parker TA, Anthony RV. Placental development in normal and compromised pregnancies: a review. Placenta. 2002;23(Suppl A):S119-29. http://dx.doi.org/10.1053/plac.2002.0792. PMid:11978069.

Renfree MB. Implantation and placentation. In: Austin CR, Short RV, editors. Reproduction in mammals. Cambridge: Cabridge University Press; 1982. p. 26-69.

Reynolds LP, Borowicz PP, Vonnahme KA, Johnson ML, Grazul-Bilska AT, Redmer DA, Caton JS. Placental angiogenesis in sheep models of compromised pregnancy. J Physiol. 2005;561(Pt 1):43-58. http://dx.doi.org/10.1113/jphysiol.2004.081745. PMid:15760944.

Rojas-García PP, Recabarren MP, Sir-Petermann T, Rey R, Palma S, Carrasco A, Perez-Marin CC, Padmanabhan V, Recabarren SE. Altered testicular development as a consequence of increase number of sertoli cell in male lambs exposed prenatally to excess testosterone. Endocrine. 2013;43(3):705-13. http://dx.doi.org/10.1007/s12020-012-9818-5. PMid:23076741.

Rowson LE, Moor RM. Development of the sheep conceptus during the first fourteen days. J Anat. 1966;100(Pt 4):777-85. PMid:5969978.

Seo H, Bazer FW, Burghardt RC, Johnson GA. Immunohistochemical examination of trophoblast syncytialization during early placentation in sheep. Int J Mol Sci. 2019;20(18):4530. http://dx.doi.org/10.3390/ijms20184530. PMid:31540219.

Shi Y, Lan F, Matson C, Mulligan P, Whetstine JR, Cole PA, Casero RA, Shi Y. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell. 2004;119(7):941-53. http://dx.doi.org/10.1016/j.cell.2004.12.012. PMid:15620353.

Spencer TE, Johnson GA, Bazer FW, Burghardt RC. Implantation mechanisms: insights from the sheep. Reproduction. 2004;128(6):657-68. http://dx.doi.org/10.1530/rep.1.00398. PMid:15579583.

Spencer TE. Early pregnancy: Concepts, challenges, and potential solutions. Anim Front. 2013;3(4):48-55. http://dx.doi.org/10.2527/af.2013-0033.

Van Leeuwen J, Rawson P, Berg DK, Wells DN, Pfeffer PL. the enigmatic disappearance of Rauber’s layer. Proc Natl Acad Sci USA. 2020;117(28):16409-17. http://dx.doi.org/10.1073/pnas.2002008117. PMid:32601185.

Vanselow J, Fürbass R, Rehbock F, Klautschek G, Schwerin M. Cattle and sheep use different promoters to direct the expression of the aromatase cytochrome P450 encoding gene, CYP19, during pregnancy. Domest Anim Endocrinol. 2004;27(2):99-114. http://dx.doi.org/10.1016/j.domaniend.2004.01.008. PMid:15219930.

Willmann D, Lim S, Wetzel S, Metzger E, Jandausch A, Wilk W, Jung M, Forne I, Imhof A, Janzer A, Kirfel J, Waldmann H, Schüle R, Buettner R. Impairment of prostate cancer cell growth by a selective and reversible lysine-specific demethylase 1 inhibitor. Int J Cancer. 2012;131(11):2704-9. http://dx.doi.org/10.1002/ijc.27555. PMid:22447389.

Wissmann M, Yin N, Müller JM, Greschik H, Fodor BD, Jenuwein T, Vogler C, Schneider R, Günther T, Buettner R, Metzger E, Schüle R. Cooperative demethylation by JMJD2C and LSD1 promotes androgen receptor-dependent gene expression. Nat Cell Biol. 2007;9(3):347-53. http://dx.doi.org/10.1038/ncb1546. PMid:17277772.

Zhang L, Altuwaijri S, Deng F, Chen L, Lal P, Bhanot UK, Korets R, Wenske S, Lilja HG, Chang C, Scher HI, Gerald WL. NF-kappaB regulates androgen receptor expression and prostate cancer growth. Am J Pathol. 2009;175(2):489-99. http://dx.doi.org/10.2353/ajpath.2009.080727. PMid:19628766.

Zhu D, Hölz S, Metzger E, Pavlovic M, Jandausch A, Jilg C, Galgoczy P, Herz C, Moser M, Metzger D, Günther T, Arnold SJ, Schüle R. Lysine-specific demethylase 1 regulates differentiation onset and migration of trophoblast stem cells. Nat Commun. 2014;5(1):3174. http://dx.doi.org/10.1038/ncomms4174. PMid:24448552.
 


Submitted date:
06/11/2020

Accepted date:
07/15/2020

5f36e0810e88250056587299 animreprod Articles
Links & Downloads

Anim Reprod

Share this page
Page Sections