

Abstracts - 37th Annual Meeting of the Association of Embryo Technology in Europe (AETE) Physiology of reproduction in male and semen technology

The effect of cryoprotectants combination at different concentrations during cryopreservation of semen from windsnyer boars.

Mamonene Angelinah Thema^{1,2}, Masindi Lottus Mphaphathi^{1,3}, Mahlatsana Ramaesela Ledwaba^{1,2}, Tshimangadzo Lucky Nedambale^{1,2}

¹Germplasm Conservation & Reproductive Biotechnologies, Agricultural Research Council, Irene, Republic of South Africa.; ²Department of Animal Sciences, Tshwane University of Technology, Pretoria, Republic of South Africa.; ³Department of Animal, Wildlife and Grassland Sciences, University of the Free State, Bloemfontein, Republic of South Africa.; mamonenethema@gmail.com

Boar sperm is associated with the post-thawed sperm quality reduction due to the low cholesterol and high polyunsaturated fatty acid contents in their sperm plasma membrane (Li J, 2017, Cryobiology, 80, 119-125). The objective of the study was to investigate the efficacy of the cryoprotectants combination at different concentrations on the Windsnyer boars sperm quality during cryopreservation. A total of 18 ejaculates (6 replications/boar) were collected from three Windsnyer boars of proven fertility with the use of the hand-gloved technique method, twice per week. Boars semen were pooled and was extended with Beltsville Thawing Solution [(BTS) IMV Technologies, France], held at 18°C for 3 hours and centrifuged. The sperm pellet was re-suspended with Fraction A (20% egg yolk + BTS) and cooled at 5°C for 1 hour. Following cooling, semen was divided and diluted into the combination of the cryoprotectants [Ethylene glycol {(EG) Sigma-Aldrich®, Munich, United State of America} + Glycerol {(GLY) Laboratory Consumables & Chemicals Supplies cc, Johannesburg, South Africa} + Propanediol {(PDO) Rochelle Chemicals & Lab Equipment, Johannesburg, South Africa}] at equal contribution to make the total concentrations of 4, 8, 12 and 16% and the 0% (control; without cryoprotectant) and loaded into 0.25 mL straws (Embryo Plus, Brits, South Africa). The semen straws were placed on liquid nitrogen (LN₂) vapour for 20 minutes and then transferred to the LN₂ tank. However, the conventional boar semen cryopreservation protocol (4% GLY + 20% egg yolk + BTS) was tested, and the results were compared with the current experiment. Thawing was accomplished by immersing the semen straws in water at 40°C for 30 seconds. Sperm motility, viability and morphology characteristics were evaluated following thawing. Sperm motility was evaluated with the use of the Sperm Class Analyser® (Microptin, Spain) system. Eosin-Nigrosin staining was used to evaluate sperm viability and morphology at 100X magnification under a phase-contrast microscope (Olympus, BX 51FT, Tokyo, Japan). A total of 200 sperm per slide/treatment was counted for sperm viability and morphology characteristics. The data were analyzed using the analysis of variance (general linear model) and statistical analysis system (SAS®). Treatment means were separated using Fisher's protected t-test and the significant differences were determined by P-value at a significant level of P<0.05. The highest post-thawed sperm total motility (21.4±7.2) percentage was recorded in the treatments supplemented with 16% combination of EG + GLY + PDO, significantly different from 4% GLY (18.0±8.2). The least post-thawed sperm progressive motility percentage was recorded in the treatments supplemented with 0% (1.1±1.3) and 8% (4.7±3.3) combination of EG + GLY + PDO, significantly different from 4% GLY (8.0±6.4). However, semen samples supplemented with a 4% (28.8±4.4) and 16% (30.4±6.2) combination of EG + GLY + PDO recorded the highest post-thawed live normal sperm percentage which was significant to 4% GLY (32.1±6.7). There was no post-thawed sperm abnormality percentage recorded in the semen supplemented with the 0% combination of EG + GLY + PDO (P<0.05). The 16% combination of EG + GLY + PDO maintained boars sperm survival during cryopreservation.

Keywords: boars, cryoprotectants, cryopreservation