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Abstract 
 
During the last 10 years the U.S. dairy industry 

has experienced a reversal of the decades-long trend in 
declining fertility traits. In fact, there is evidence that, 
nationally, this is contributing to improvements in 
pregnancy rates. And while these measures are still 
close to their historical lows, there is reason for 
optimism that this reversal will continue into the future. 
The reasons for improved pregnancy rates are related to 
use of biotechnologies and improved management 
practices for high producing dairy cows as well as 
greater emphasis on genetic selection for fertility-related 
traits. Combined, these factors have resulted in a 
reduction in the average days to first service in our 
national dairy herd of approximately 10 days over the 
past decade and a reduction in calving interval of 
approximately 15 days. However, current challenges 
include accurate identification of cows that fail to 
conceive following insemination and their timely 
reinsemination. The primary metric for success of 
pregnancy diagnosis is the inter-service interval, or the 
number of days between insemination and the 
subsequent insemination in a cow that fails to conceive 
or that loses an established pregnancy. This trait is 
directly affected by the choice of pregnancy diagnosis 
method. Pregnancy diagnosis methods include estrous 
detection (visual or assisted), transrectal palpation of 
uterine contents, transrectal ultrasound visualization of 
uterine contents and assay for hormones in blood, milk 
or other body fluids. Each of these methods has 
advantages and disadvantages. Presently, ultrasound and 
blood hormone assay at 28 days after insemination offer 
the earliest specific diagnostics for determining 
pregnancy status. However, other methods are on the 
horizon that may provide opportunities to further reduce 
the interval between insemination and accurate 
diagnosis of pregnancy status of dairy cattle. One of 
these targets identification of failed inseminations 18 to 
20 days after insemination. This approach, if successful, 
would allow identification of a portion of open cows 
prior to their expected return to estrus. The ultimate goal 
is to identify cows that fail to conceive to an 
insemination in time to reinseminate them at a normal 
cycle interval (21 to 23 days) while achieving high 

conception rates. Reproductive management programs 
that utilize early pregnancy diagnosis will reduce the 
interservice interval and improve pregnancy rate, which 
is a key metric in determining profitability on dairy 
farms. 
 
Keywords: cattle, diagnostic, fertility, interferon, 
pregnancy, ultrasound. 
 

Introduction 
 
Poor reproductive performance remains one of 

the primary reasons for involuntary culling of dairy 
cows in the U.S. and globally. Roughly one third of 
dairy cows culled annually in the U.S. are culled due to 
reproductive problems (DeVries et al., 2010; Pinedo 
and DeVries, 2010). Lactating cows that fail to conceive 
are eventually culled for low production late in lactation 
at high cost to the dairy farmer (Britt, 1985). Low 
fertility results in reduced herd milk production, 
increased cost associated with multiple inseminations 
and increased number of replacement heifers needed to 
maintain herd size (Britt, 1985). Fortunately, during the 
last 10 years the U.S. dairy industry has experienced a 
reversal of the decades-long trend in declining fertility 
traits. In fact, trends in fertility traits are increasing in 
the U.S. (Fig. 1). And while fertility traits are still close 
to their historic lows, there is reason for optimism that 
this reversal will continue into the future. Pregnancy 
rate is the product of the estrous detection or submission 
rate (for dairies using timed artificial insemination) and 
the conception rate. It is a measure of how quickly cows 
that are eligible to become pregnant (i.e. after the 
voluntary waiting period) actually become pregnant. 
Improved fertility traits and use of technologies to 
improve submission rates have been largely responsible 
for the improved pregnancy rates during the last decade. 
For example, use of ovulation synchronization (e.g. 
Ovsynch) with timed artificial insemination (TAI) has 
resulted in more cows getting their first postpartum 
insemination closer to the end of the voluntary waiting 
period. One current challenge, however, is early and 
accurate diagnosis of pregnancy status to allow for cows 
that failed to conceive or maintain pregnancy to be 
reinseminated in a timely fashion. 
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Figure 1. A) Genetic trends for cow and sire breeding value (BV) for productive life in U.S. dairy cows, and B) 
Genetic trends for daughter pregnancy rate in U.S. Dairy cows. From Council for Dairy Cattle Breeding, 2014. 
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Trends in genetic selection for fertility traits 
 

Since its inception 20 years ago, the Lifetime 
Net Merit index (NM$) in the U.S. has increased 
genetic selection for fertility- and health-related traits. 
In 1994, when Net Merit Dollar index was introduced it 
was weighted roughly 75% for production traits (yield, 
fat and protein). Today’s NM$ gives only ~35% weight 
to production traits with the remaining emphasis 
placed on health and fitness traits. These include 
productive life (PL; 22% current weight), which was 
introduced in 1994 and daughter pregnancy rate (DPR) 
which was introduced in 2003 with a weight of 6% and 
increased twice to its present weight in the index of 
11%. While it will take some time to determine the full 
effects of these latest changes, it is clear they have 
resulted in improved genetic merit for fertility traits in 
the U.S. dairy herd. Currently, the difference in 
predicted transmitting ability (PTA) between the 
highest and lowest ranking bulls for DPR is 
approximately 8, which translates to daughters of the 
highest ranking DPR bulls conceiving, on average, 32 
days sooner than those from the lowest ranking DPR 
bulls. Furthermore, with the routine collection of more 
fertility related data (e.g. cow conception rate, heifer 
conception rate) along with other health and fitness 
traits, it is likely that we will see continued evolution of 
NM$ towards more robust selection of fertility and 
health traits (Dechow, 2014). 

 
Trends in reproductive management strategies 

 
During this same 20 year span, approaches to 

reproductive management have also changed. In 1994, 
the majority of dairies bred cows based on estrous 
detection with few farms using estrous synchronization 
(Miller et al., 2007). With the advent of ovulation 
synchronization programs in the mid-1990’s, farms that 
were struggling with estrous detection had another tool 
to manage reproduction (Pursley et al., 1995, 1997). 
This period was also accompanied by increased use of 
transrectal ultrasound and blood and milk hormone tests 
for pregnancy diagnosis. Ultrasound evaluation of 
ovarian structures also increased the ability to tailor 
reproductive management to ovarian status. Today, 
most dairies use a combination of insemination based on 
estrous detection and synchronization of ovulation 
coupled with TAI (Caraviello et al., 2006). Combining 
these approaches is the most economical way to 
improve pregnancy rates given typical rates of 
synchronization drug injection compliance and estrous 
detection efficiencies (Galvão et al., 2013). Fewer 
dairies are choosing to use on-farm bulls for mating 
cows, and for good reason. Bull breeding should be 
considered a choice of last resort for modern dairies. 
Aside from their lower genetic merit, on-farm bulls 
consume feed and occupy facilities, suffer from 
infertility and venereal diseases, require veterinary 

attention, and cause injuries and deaths on farms each 
year (Lima et al., 2010).  

Efficiency and accuracy of estrous detection 
have also benefited from development of tools including 
simple tail head chalking/painting and glue-on mount 
detectors to higher tech pedometers and activity 
monitors containing accelerometers that continuously 
monitor a cow’s activity (Van Eerdenburg, 2008; Fricke 
et al., 2014a). Use of activity monitors with 
accelerometers will likely continue to increase because 
of their automation and compatibility with mobile 
devices and cloud-based data storage and analysis. This 
technology is particularly attractive for dairies of 
intermediate size (150 to 500 cows) that struggle to 
maximize efficiency of labor use (Fricke et al., 2014b) 
and for dairies that prefer not to use hormonal 
synchronization (Neves et al., 2012). For example, in a 
large study comparing the use of automated activity 
monitors (AAM) with synchronization and timed 
artificial insemination, AAM reduced days to first 
service in two of the three large dairies examined 
(Neves et al., 2012). Recently, comparison was made 
between AAM and a presynchronization-ovulation 
synchronization program with TAI (Stevenson et al., 
2014). Interestingly, pregnancies per AI were modestly 
lower with insemination based on AAM, but cows 
became pregnant quicker with AAM compared to TAI, 
probably due to the earlier VWP in the AAM group 
(Stevenson et al., 2014).  

Together, estrous synchronization and 
ovulation synchronization with TAI are credited with 
reducing the average days to first service from 90 to 81 
days over the last 10 years (Miller et al., 2007; Council 
on Dairy Cattle Breeding, 2014). This has resulted in a 
reduction of calving interval of about two weeks during 
this same period. In spite of these improvements in 
estrous detection technologies, low efficiency and 
accuracy of estrous detection remains the primary 
reason for dairies adopting ovulation synchronization 
and TAI programs (Goodling et al., 2005; Moore and 
Thatcher, 2006). Variations of the ovulation 
synchronization programs coupled with 
presynchronization (e.g. Presynch) provide a variety of 
options to fit producer needs. The Ovsynch 56 program 
(gonadotropin releasing hormone (GnRH) followed 7 
days later by prostaglandin F2α (PGF), then a second 
GnRH injection 56 h later with TAI 16 h later), has 
proven to be the most effective ovulation 
synchronization program for maximizing pregnancy 
rates. This program is most effective when initiated at 
days 5 to 9 of the cows’ estrous cycle (Vasconcelos et 
al., 1999; Moreira et al., 2000). To accomplish this, 
presynchronization programs have been developed 
using either PGF (Presynch: two injections of PGF 14 
days apart followed by Ovsynch 11 to 14 days later) or 
a combination Ovsynch without TAI followed by 
Ovsynch started 7 days later (Double-Ovsynch; Moreira 
et al., 2000; Souza et al., 2008). The advantage of the
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latter programs that include GnRH in the 
presynchronization is that cows that are not cycling will 
be induced to form a corpus luteum by use of GnRH 
(Herlihy et al., 2012; Ayres et al., 2013). In either case, 
use of presynchronization ensures that a greater number 
of cows will ovulate to the first GnRH of the ovulation 
synchronization program (Gumen et al., 2012; Ayres et 
al., 2013). Use of Presynch-Ovsynch programs on well-
managed dairies yields pregnancy rates comparable to 
inseminating cows based on detected estrus (Rabiee et 
al., 2005; Stevenson et al., 2014), and a high percentage 
of large dairies in the U.S. use some form of hormonal 
synchronization with timed artificial insemination 
(Caraviello et al., 2006). 

Improvements in estrous detection and estrous 
and ovulation synchronization coupled with TAI have 
resulted in more cows being inseminated in the first 21 
days after the voluntary waiting period. Improvements 
in fertility traits, while modest, should result in 
improved conceptions rates to these earlier services. 
Thus, improvements in both submission rates and 
conception rates will likely continue to yield slow, but 
steady improvement in pregnancy rates. The current 
challenge is to reduce the interservice interval for those 
cows that fail to conceive or that lose an established 
pregnancy. This challenge requires accurate and early 
detection of pregnancy status. 
 

Pregnancy diagnosis 
 

Key to effective reproductive management 
programs is early and accurate pregnancy diagnosis 
following insemination. The goal is for cows to be 
reinseminated, on average, before 42 days after a failed 
insemination. Estrous detection following insemination 
remains a widely used approach to pregnancy diagnosis. 
However, dairies that struggle with accurate estrous 
detection often experience extended (>42 days) 
interservice intervals when relying on this method. In 
addition, inaccurate estrous detection increases the risk 
for insemination of pregnant cattle (Moore et al., 2005). 
Here again, use of second generation AAM may aid in 
detecting cows returning to estrus 21 to 24 days after 
insemination. Furthermore, for dairies that use ovulation 
synchronization and TAI for first services, some cows 
will not continue cycling after the first insemination and 
will not be detected in heat (Lucy et al., 2004).  
 
Transrectal palpation and ultrasound visualization 

of uterine contents 
 

Palpation of uterine contents per rectum is the 
most widely used method for pregnancy diagnosis in 
dairy cattle. The technique can be performed reliably 
after day 30 of pregnancy and is highly accurate when 
practiced by a skilled veterinarian or animal manager. 
Palpation does require training and experience to 
conduct with high accuracy and without damaging the 

embryo when conducted at very early stages gestation 
(<35 days; O’Connor, 1994). It is also possible to 
determine ovarian structures. However, this requires an 
even higher level of training and experience to conduct 
reliably. Transrectal palpation is relatively inexpensive 
compared to other methods for pregnancy diagnosis, but 
it does increase the risk of iatrogenic pregnancy loss, 
spreading diseases between cattle and is physically 
demanding for the technician.  

With the development of ultrasound 
technology in the 1980’s, dairies had a new, accurate 
and specific tool for determining pregnancy status 
(Pierson and Ginther, 1984). The cost of the technology 
initially limited its use for commercial dairies 
(O’Connor, 1994). However, as average dairy size has 
increased and the cost, ease of operation and reliability 
of ultrasound improved, the use of ultrasound for 
pregnancy diagnosis has increased (Quentela et al., 
2012; Pereira et al., 2013). The advantages of 
ultrasound include ability to determine: 1) pregnancy 
status at earlier stages (>25 days in cattle); 2) presence 
of twins with increased accuracy; 3) fetal viability (e.g. 
heart beat); 4) fetal gender; and 5) ovarian structures 
(follicles and corpora lutea). Although many 
veterinarians now provide ultrasound service to dairies 
of all sizes, cost and frequency of veterinary visits is 
still limiting for smaller dairies. 
 

Chemical pregnancy assays 
 

Blood and milk progesterone assays have been 
available for over 20 years (O’Connor, 1994). However, 
because progesterone is not pregnancy-specific and the 
requirement for multiple assays to achieve acceptable 
specificity, these assays have not been widely adopted. 
However, development of sensitive automated inline 
milk progesterone assays should make this technology 
amenable to commercial application (Käppel et al., 
2007; Fricke et al., 2014a). Automated inline testing 
should accelerate the adoption of progesterone assay for 
pregnancy diagnosis because of the high accuracy of 
sequential testing at insemination and then at 20 to 24 
days after insemination for detecting failed 
inseminations (O’Connor, 1994). Testing at later 
intervals could then be used for confirming pregnancy 
status. Adoption of inline testing technology will likely 
take some time due to the high capital costs and will be 
dependent on the reliability of the automated inline 
tests. 

The first reliable pregnancy-specific hormone 
assays were developed to measure placenta-derived 
proteins. The first of these measured circulating 
concentrations of pregnancy-specific protein B (PSPB; 
Butler et al., 1982). Pregnancy-specific protein B is 
produced by placental giant binucleate cells that form 
from mononuclear trophoblast cells starting around days 
17 to 19 of pregnancy in cattle (Spencer et al., 2007). 
Pregnancy-specific protein B concentrations begin to be
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reliably detectable in plasma starting at day 24, and by 
day 28 concentrations are sufficiently elevated to allow 
their use for a highly reliable test for pregnancy in 
ruminant animals (Sasser et al., 1986). Pregnancy-
specific protein B is a member of the pregnancy 
associated glycoprotein (PAG) family of proteins which 
are encoded by a very large gene family (Xie et al., 
1994). PAG are also secreted in milk and reliable milk 
PAG tests are now available in the U.S. for use after day 
35 of early pregnancy (Green and Roberts, 2006). A 
number of commercial suppliers are now producing 
diagnostic tests for PAG family members in blood and 
milk and millions of samples are tested annually in the 
U.S. Currently, available PAG diagnostic tests require 
delivering samples to a centralized testing laboratory. 
Once these tests are adapted to inline milking systems 
and/or developed into “cow-side” diagnostics, they will 
be more widely adopted. 
 
New opportunities for early diagnosis of pregnancy 

status 
 

A large but ill-defined percentage of cows fail 
to conceive following insemination or lose embryos 
prior to rescuing CL function (Pereira et al., 2013). 
Theoretically, these cows could be detected in estrus 
and be reinseminated 21 to 24 days after their first 
insemination. However, as stated above, not all these 
cows will exhibit estrous behavior and those that do 
often go undetected resulting in less than 50% of open 
cows being detected in estrus 21 to 24 days after 
insemination. These cows have been called “phantom” 
cows (Lucy et al., 2004). Therefore, if a pregnancy-
specific signal could be detected during early pregnancy 
it could be used to identify failed conceptions and allow 
for reinsemination of open cows at 21 to 24 day 
intervals. 

Interferon tau (IFN-τ) is the conceptus signal 
responsible for rescuing CL function in ruminants 
(Bazer et al., 2009). With its discovery and 
characterization, a number of groups attempted to detect 
IFN-τ in systemic circulation as a method for 
determining conceptus signaling during early pregnancy 
(Stewart et al., 1992). With the exception of one study 
with a small number of pregnant sheep (Schalue-Francis 
et al., 1991), the outcomes of a number of studies 
supported the prevailing hypothesis that IFN-τ did not 
escape the uterus in appreciable quantities. It was 
generally accepted that IFN-τ acted locally on the 
uterine endometrium to alter the pattern of PGF release 
and maintain CL function (Spencer and Bazer, 2004). 
This is in contrast to humans where conceptus-produced 
chorionic gonadotropin directly supports CL function 
and can be measured in maternal blood and urine as 
soon as 6 to7 days following fertilization (Bazer et al., 
1991). Early studies either used antiviral assay for 
detecting interferon activity (Pontzer et al., 1988) or  
RIA (Vallet et al., 1988) or ELISA (Zhu et al., 1996) to 

directly assay for IFN-τ. More recently, we addressed 
the question of systemic responses to conceptus 
signaling in ruminants using a different, indirect, 
approach of assaying for expression of interferon 
stimulated genes (ISG) in peripheral blood leukocytes 
(Yankey et al., 2001). Type I interferons such as IFN-τ 
induce a large number of ISG that are better known in 
the immune response to viral infection (Williams, 
1991). Among these are the myxovirus resistance genes 
(MX1 and MX2; Ott et al., 1998) and interferon 
stimulated gene 15 (ISG15; Austin et al., 2004). 

Results of Yankey et al. (2001) were the first to 
show that early pregnancy resulted in increased abundance 
of mRNA and protein for MX1 in peripheral blood 
leukocytes (PBL) of pregnant compared to non-pregnant 
ewes on day 15 after insemination (Fig. 2). The effect of 
early pregnancy signaling on ISG expression in PBL was 
subsequently confirmed in cattle (Han et al., 2006; Gifford 
et al., 2007; Stevenson et al., 2007; Oliveira et al., 2008; 
Green et al., 2010; Ribeiro et al., 2014). Figure 3 shows 
abundance of mRNA for MX2 and ISG15 in PBL of dairy 
cattle following insemination (Gifford et al., 2007). 
Messenger RNA for ISG15 was increased in PBL of 
pregnant compared to bred, nonpregnant, dairy cows on 
day 18 and 20 after insemination and MX2 mRNA 
abundance was greater at day 16, 18 and 20 after 
insemination. Importantly, differences in expression of ISG 
occurred prior to the expected time of return to estrus (day 
21 to 24).  These results caused a careful reevaluation of 
hypothesis that IFN-τ acted solely in a paracrine fashion to 
alter uterine PGF production and maintain CL function 
(Oliveira et al., 2008). 

Consistent with previous results, Oliveira et al. 
(2008) demonstrated that expression of interferon 
stimulated genes increased in the peripheral blood of 
pregnant sheep at day 15. Furthermore, they showed 
that antiviral activity (a measure of IFN) was elevated in 
uterine vein plasma, but not plasma obtained from the 
uterine artery during early pregnancy. These results 
strongly suggested that there was endocrine release of 
IFN-τ or a related IFN from the uterus in response to 
conceptus IFN-τ. This hypothesis was confirmed in 
subsequent studies using implanted mini-pumps 
delivering low doses of IFN-τ into the uterine vein that 
protected the CL from a subluteolytic dose of PGF (Bott 
et al., 2010; Antoniazzi et al., 2013). These experiments 
strongly supported the hypothesis that IFN-τ exits the 
uterus, induces ISG in blood cells and peripheral tissues 
including CL and liver and that this mechanism may 
contribute to protecting the CL from the luteolytic 
effects of PGF (Antoniazzi et al., 2013).  

From a practical standpoint, the fact that the 
presence of a conceptus induces ISG in peripheral blood 
prior to expected return to estrus provides an 
opportunity to detect failed inseminations during a 
period when the ovary should contain a second or third 
wave dominant follicle that could be induced to ovulate. 
This would allow reinsemination of open cows at 21 to
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24 day intervals (Lucy et al., 2004). In this model, cows 
detected open at day 18 to 20 after insemination would 
receive injection of a luteolytic dose of PGF and be bred 
on detected estrus or receive TAI accompanied by a 
GnRH injection 48 to72 h after the PGF injection (Lucy 
et al., 2004). The effectiveness of such a program for 
reinsemination of open cows has not yet been 
determined. It would be highly dependent on the 
percentage of open cows that are detectable at 18 to 20 
days after insemination, which has not been determined 
in replicated large-scale studies. However, estimates are 
that greater than 50% of failed inseminations have 
occurred by 20 days after insemination (Pereira et al., 
2013). Any diagnostic test developed for this purpose 
would need to exhibit a high degree of specificity 
because it would trigger a management decision to lyse 
the CL with PGF and return the cow to estrus. Of 
course, cows with elevated expression of ISG at this 
time would be presumed pregnant, but pregnancy would 
need to be confirmed later in gestation to account for 
later embryo losses. A diagnostic used as described here 
could not be considered a pregnancy test, due to the 
relatively high degree of embryo loss that occurs 
between day 20 and 45 after insemination (Pereira et al., 
2013). The usefulness of such a diagnostic would be for 
detecting open cows.  

Finally, studies on conceptus-uterus-immune 
cell cross-talk during early pregnancy have raised 
new questions related to the function of these ISG 
both locally in the uterus and in the peripheral tissues 

during early pregnancy (Ott and Gifford, 2010). 
Interferon stimulated genes generally function as part 
of the innate immune response to viral infection. For 
example, MX1 blocks the replication of negative-
stranded RNA viruses by interfering with generation 
of viral transcripts or by inhibiting assembly of 
mature viral particles depending on the species of 
animal (Haller and Kochs, 2011). Whether activation 
of ISG in early pregnancy is to elevate innate 
immunity (during a period when some aspects of 
immune function are down regulated to protect the 
allogeneic conceptus) is a question currently under 
investigation (Ott and Gifford, 2010). Furthermore, 
assaying for expression of interferon stimulated 
genes in blood during early pregnancy provides a 
non-invasive window on conceptus-uterine cross-talk 
during early pregnancy (Gifford et al., 2008). For 
example, Ribeiro et al. (2014) recently showed that 
treatment of lactating cows with sequential low doses 
of recombinant bovine somatotropin 14 days apart 
starting at insemination improved conceptus growth 
and pregnancy rates (Ribeiro et al., 2014). Enhanced 
conceptus growth was also reflected in increased 
abundance of ISG15 mRNA in peripheral blood 
leukocytes at day 19 after insemination in cows that 
maintained their pregnancies (Fig. 4). Interestingly, 
not all ISG responded in a similar fashion suggesting 
that much more remains to be learned about 
conceptus-uterus-immune cell cross-talk during early 
pregnancy in ruminants (Ribeiro et al., 2014). 

 

 
 
Figure 2. Steady state abundance of myxovirus  resistance 1 (Mx) mRNA in  peripheral blood lymphocytes of 
pregnant (black bars) and bred, non-pregnant (grey bars) ewes from insemination (day 0) to 30 days after 
insemination. Mx mRNA was increased in pregnant ewes from day 15 to 30 after insemination. From Yankey et al., 
2001. 
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Figure 3. Relative fold change in steady state abundance of mRNA for interferon 
stimulated  gene 15 (ISG-15) and myxovirus resistance 2 (Mx2) in peripheral blood 
leukocytes at 16, 18 and 20 days after insemination in pregnant (filled bars) and bred, 
non-pregnant dairy cows (open bars). *indicates statistical difference between 
pregnancy statuses (P < 0.05). From Gifford et al., 2007.  

 
 

 
 
Figure 4. Effects of a single low dose (325 mg) of bovine somatotropin (S-bST) 
given at insemination or two sequential S-bST at insemination and 14 days later on 
relative mRNA abundance of ISG15 at day 19 after insemination in cows diagnosed 
pregnant (open bars) and  open (filled bars) 31 days after insemination. From Ribeiro 
et al., 2014. 
 
 

R
el

at
iv

e 
fo

ld
  

ch
an

ge
 

6 
 

4 

 
2 

 
0 

Days after insemination 
16                           18                       20 

Mx2 

ISG-15 

R
el

at
iv

e 
fo

ld
  

ch
an

ge
 

6 
 

4 
 

2 
 

0 16                        18                       20 
Days after insemination 

R
el

at
iv

e 
m

R
N

A
 e

xp
re

ss
io

n 

7 
 

6 
 

5 
 

4 
 

3 
 

2 
 

1 
 

0 
Control            S-bST                   T-bST 

ISG15 

b 

a a 

b b 

c 



 Ott et al. Pregnancy diagnosis in ruminants. 
 

214 Anim. Reprod., v.11, n.3, p.207-216, Jul./Sept. 2014 

Conclusions 
 
Obtaining optimal pregnancy rates is a key to 

success in the dairy business. Technologies developed 
over the last 25 years have improved the ability of 
producers to accurately detect estrus and monitor 
pregnancy status while maximizing labor efficiency. 
Coupled with an increase focus on reproductive and 
fitness traits in selection indexes, dairy producers are 
beginning to reverse the decades-long trend in declining 
reproductive performance in the U.S. Automated 
continuous activity monitors containing accelerometers 
will allow real-time evaluation of health status and 
improve estrous detection rates. Integration of these 
systems with cloud computing and mobile device 
communication will provide producers with continuous 
information about the status of cows in the herd. The 
challenge will be with handling large data sets and 
distilling down information in a form that is useful to 
support on-farm decision making.  There will likely be 
increased adoption of pregnancy-specific hormone 
assays, especially if these assays can be adapted to 
inline or “cow-side” diagnostic platforms as has been 
done for the milk progesterone assay. Ultrasound will 
remain the gold-standard for evaluating reproductive 
status and affordability and ease of use are likely to 
continue to improve. Optimized hormonal 
synchronization protocols currently allow producers to 
precisely target first inseminations. However, detection 
of failed inseminations and timely reinsemination of 
cows continues to be a challenge that increases days 
open and reduces profitability. New diagnostic 
approaches are targeting detection of open cows 18 to 
20 days after insemination. If successful, they should 
allow a large proportion of open cows to be identified 
and reinseminated at 21 to 24 day intervals.  
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