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Abstract 
 

Progesterone (P4) from the corpus luteum (CL) 
is critical for the establishment and maintenance of 
pregnancy and plays a major role in regulating 
endometrial secretions essential for stimulating and 
mediating changes in conceptus growth and 
differentiation throughout early pregnancy in ruminants. 
Numerous studies have demonstrated an association 
between elevated P4 and acceleration in conceptus 
elongation. A combination of in vivo and in vitro 
experiments found that the effects of P4 on conceptus 
elongation are indirect and mediated through P4-
induced effects in the endometrium. Despite effects on 
elongation, data on the impact of post-insemination 
supplementation of P4 on pregnancy rates are 
conflicting and typically only result in a modest 
improvement, if any, in fertility. Differences in 
conceptus length on the same day of gestation would 
suggest that factors intrinsic to the blastocysts 
transferred regulate development, at least in part, and 
would be consistent with the hypothesis that the quality 
of the oocyte regulates developmental competence. This 
paper will review recent knowledge on the effect of P4 
on conceptus development in cattle and summarize 
strategies that have been undertaken to manipulate post 
fertilization P4 concentrations to increase fertility. 
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Introduction 
 

Most embryonic loss in cattle occurs in the first 
few weeks after conception. Fertilisation success is 
typically high (~90%) but a significant proportion of the 
resulting embryos fail to develop to term. The majority 
of these embryos are lost between fertilisation and 
maternal recognition of pregnancy, which in cattle 
occurs around day 16 post-mating (Diskin and Morris, 
2008; Wiltbank et al., 2016). Wiltbank et al. (2016) 
described four pivotal periods for pregnancy loss during 
the first trimester of gestation and discussed possible 
causes for pregnancy failure during these periods. 
Despite a relatively high fertilization rate (>85%), 20-
50% of high-producing lactating dairy cows experience 
pregnancy loss during the first week of gestation. From 
days 8 to 27, concomitant with embryo elongation and 
maternal recognition of pregnancy, losses average 
approximately 30%. From days 28 to 60, losses of 

approximately 12% occur while in the fourth period, 
during the third month of pregnancy, pregnancy losses 
are reduced (approximately 2%), but may be elevated in 
some cows, particularly in those carrying twins in the 
same uterine horn (Wiltbank et al., 2016). 

Optimal dialogue between the developing 
embryo and its mother is essential for successful 
pregnancy recognition and maintenance of pregnancy 
during the critical peri-implantation period of pregnancy 
when the stage is set for implantation and placentation 
that precedes fetal development (Guillomot, 1995; Hue 
et al., 2012; Spencer et al., 2015). However, this 
dialogue really only becomes absolutely essential as the 
time of pregnancy recognition approaches as evidenced 
by the fact that embryos are routinely transferred to a 
synchronous uterus up to about day 8 of development in 
commercial embryo transfer with good success. Indeed, 
pregnancies have been achieved following transfer of 
embryos as late as day 16 (Betteridge et al., 1980), 
although due to the filamentous nature by that time, it is 
impractical to do so. 

Uterine epithelial cells secrete and/or transport 
a wide range of molecules, including nutrients, 
collectively referred to as histotroph that are transported 
into the fetal-placental vascular system to support 
growth and development of the conceptus (embryo/fetus 
and associated membranes). In turn, molecules secreted 
by conceptuses, in particular interferon tau (IFNT), the 
maternal recognition of pregnancy signal in ruminants, 
but also prostaglandins (PGs; Dorniak et al., 2011, 
2012; Spencer et al., 2013), induce changes in the 
uterine endometrium which are essential if pregnancy is 
to be maintained. 

There is a strong positive association between 
the post-ovulatory rise in concentrations of progesterone 
(P4) and embryonic development in sheep and cattle 
(Satterfield et al., 2006; Carter et al., 2008). Much has 
been written about the role of P4 in the establishment 
and maintenance of pregnancy. Many researchers have 
tried to manipulate P4 concentrations during the first 
two weeks after mating in an attempt to achieve higher 
pregnancy rates. Rather than repeat in detail what has 
already been written, the reader is directed to several 
other recent comprehensive reviews on the subject 
(Lonergan, 2011, 2015; Wiltbank et al., 2014; Spencer 
et al., 2015). 

 
Establishment of pregnancy in cattle 

 
Following fertilization in the oviduct, the early
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embryo undergoes the first mitotic cleavage divisions 
before entering the uterus at about the 16-cell stage on 
approximately day 4 after ovulation. It soon forms a 
morula and, by day 7, a blastocyst containing an inner 
cell mass and a single layer of trophectoderm 
surrounding a fluid-filled blastocoel cavity. After 
hatching from the zona pellucida on approximately days 
8 to 9, the spherical blastocyst grows and changes in 
morphology from a spherical to ovoid shape during a 
transitory phase preceding the elongation of the 
trophectoderm to a filamentous form that usually begins 
between days 12 and 14. The conceptus continues to 
grow and secrete IFNT, which prevents prostaglandin-
induced luteolysis and maintains the pregnancy. Unlike 
primate and rodent embryos which invade the 
endometrium soon after hatching, ruminant 
conceptuses do not invade the endometrium during 
implantation, which commences at approximately day 
19 in cattle (Guillomot, 1995), but rather undergo an 
extended free-floating period of development during 
which they exibit rapid elongtion of the extra-
embryonic tissues. 

In vitro fertilization studies have demonstrated 
that contact with the female reproductive tract is not 
necessary in order for the embryo to reach the hatched 
blastocyst stage. However, the characteristic elongation 
of the conceptus prior to implantation is dependent on 
secretions from the uterus. This elongation does not 
occur in vitro (Flechon et al., 1986) and does not occur 
in vivo in the absence of uterine glands (Gray et al., 
2002; Spencer and Gray, 2006). Several authors have 
attempted to induce elongation in vitro by growing 
blastocysts in confined spaces (Brandão et al., 2004; 
Alexopoulos et al., 2005; Zhao et al., 2015) but while 
lateral expansion occurs, events as they occur in vivo are 
not recapitulated. 

Thus, exposure to the uterine environment is 
required for conceptus elongation. Uterine luminal fluid 
(ULF) contains embryotrophic substances, collectively 
termed histotroph, that drive elongation of the conceptus 
via effects on trophectoderm proliferation and migration 
as well as attachment and adhesion to the endometrial 
luminal epithelium (LE; Gray et al., 2001; Spencer et 
al., 2008; Bazer et al., 2010; Forde et al., 2014a). The 
ULF is derived primarily from transport and (or) 
synthesis and secretion of substances by the endometrial 
LE and glandular epithelium (GE), but also by the 
conceptus (Forde et al., 2015), and it is a complex and 
rather undefined mixture of proteins, lipids, amino 
acids, sugars (glucose, fructose), ions, and 
exosomes/microvesicles (Bazer, 1975; Gray et al., 
2001; Bazer et al., 2012; Burns et al., 2014; Forde et al., 
2014b). P4 induces the expression of a number of genes 
in the endometrial epithelium that are then further 
stimulated by factors from the conceptus (e.g., IFNT 
and PGs) and the endometrium itself (Dorniak et al., 
2013; Brooks et al., 2014; Lonergan and Forde, 2014). 
In turn, the genes and functions regulated by these 
hormones and factors in the endometrial epithelia cause 
specific changes in the uterine histotroph that govern 
conceptus survival and elongation (Faulkner et al., 
2013; Forde et al., 2014a, 2015). 

Progesterone and the endometrium 
 

A prerequisite for establishing uterine 
receptivity to implantation in all species studied thus far 
is loss of expression of P4 receptors (PGR) from uterine 
LE and then GE (Bazer et al., 2010). Paradoxically, it is 
sustained exposure of the endometrium to circulating 
concentrations of P4 that leads to this down-regulation 
of PGR as the luteal phase of the estrous cycle 
progresses. The concentrations of P4 in circulation 
modify the loss of expression of PGR in the 
endometrium such that, in animals in which P4 is high 
there is early loss of the PGR (Okumu et al., 2010) i.e. 
uterine receptivity to implantation is established earlier. 
Conversely, low or sub-optimal concentrations of P4 
delay loss of the PGR and thus delay establishing 
uterine receptivity to implantation (Forde et al., 2011a). 
Thus, in simple terms, it would appear that elevating P4 
immediately after estrus or mating simply advances the 
changes in endometrial gene expression which normally 
occur (Forde et al., 2009). 

The transcriptome of the bovine endometrium 
has been described under a variety of physiological and 
experimental conditions (Forde et al., 2009, 2011a, b; 
Sandra et al., 2011; Bauersachs et al., 2012; Binelli et 
al., 2015). Temporal changes in gene expression in the 
uterus occur irrespective of whether the cow is pregnant 
or not and it is really only at the time of maternal 
recognition of pregnancy at around day 16 that major 
changes in gene expression between pregnant and cyclic 
endometrium are detectable (Forde et al., 2011b; 
Bauersachs et al., 2012). Forde et al. (2009) described 
the global transcriptome of the endometrium from day 5 
to day 16 in pregnant and cyclic cattle under conditions 
of normal and elevated P4 and revealed how circulating 
concentrations of P4 regulate endometrial genes. This 
study found that P4 supplementation advanced the 
normal temporal changes in endometrial gene 
expression, particularly for genes associated with 
energy sources or contributors to histotroph, which may 
contribute to advanced conceptus development on day 
13 and day 16.  
 

Progesterone and conceptus elongation 
 

Elongation of the ruminant conceptus is 
essential for normal pregnancy recognition and 
implantation. Mamo et al. (2011) described the global 
transcriptome profile of the bovine conceptus at five key 
stages of its pre- and peri-implantation growth (days 7, 
10, 13, 16, and 19). Analysis identified differentially 
regulated genes organized in nine gene clusters forming 
a sequential transcript dynamics across these 
developmental stages. These data have been expanded 
upon by more recent studies (Valour et al., 2014; 
Barnwell et al., 2015, 2016; Ribeiro et al., 2016a, b).  

Flechon et al. (1986) cut day 12 ovine 
blastocysts into pieces and cultured them in vitro for 24 
h, to produce structures called trophoblastic vesicles 
(TV, blastocysts without the embryonic disc). Such TV 
survived in vitro for up to 10 days but failed to elongate. 
In contrast, TVs elongated in vivo after transfer to 
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recipients demonstrating that trophoblast elongation 
does not depend necessarily on the presence of the 
embryo proper, but can occur in TV composed only of 
the trophectoderm and the extraembryonic endoderm. 

Earlier studies in ewes (Wilmut and Sales, 
1981; Lawson and Cahill, 1983) and cows (Garrett et 
al., 1988b) suggested that maternal P4 regulates early 
conceptus growth and development. More recent studies 
have confirmed those findings and began to unravel the 
underlying biology. In particular, significant progress 
has been made in clarifying the role of P4 in the 
successful establishment of pregnancy in sheep and 
cattle, with particular emphasis on how P4 affects 
endometrial gene expression and conceptus elongation. 

The stimulatory effect of P4 on trophoblast 
elongation is unequivocal. As mentioned earlier, 
however, this effect is likely a result of downstream 
effects of P4-induced changes in gene expression in 
cells of the endometrium (Satterfield et al., 2006; Forde 
et al., 2009, 2011a) resulting in changes in the 
composition of ULF or histotroph to which the 
developing embryo is exposed (Faulkner et al., 2013). 
Whether any of the effects of P4 are directly on the 
embryo has been assessed by experiments in which P4 
was added to medium during the in vitro culture of 
embryos. Results of such studies have been varied and 
contradictory with some authors reporting positive 
effects of P4 (Ferguson et al., 2005, 2011; Merlo et al., 
2007) while others have reported no effect (Reggio et 
al., 1997; Goff and Smith, 1998). Overall, however, 
despite the presence of PGR mRNA on embryos 
(Clemente et al., 2009), there is little convincing 
evidence that P4 has a direct effect on the early embryo. 
In our own laboratory, culture of embryos in vitro in the 
presence of P4 did not affect the proportion developing 
to the blastocyst stage in the presence or absence of 
oviductal epithelial cells (Clemente et al., 2009). This 
finding is consistent with the observations of Larson et 
al. (2011) who failed to observe a direct effect of P4 
either from days 1 to 3 or 4 to 7 after fertilisation. 
Furthermore, addition of P4 to culture medium had no 
effect on conceptus elongation after transfer to 
synchronised recipients (Clemente et al., 2009). In two 
other in vivo studies, we failed to demonstrate an effect 
of elevated P4 on blastocyst development. In the study 
of Carter et al. (2008), no differences in embryonic 
development on day 5 or day 7 were observed when 
beef heifers were supplemented with exogenous P4 
from day 3, despite dramatic effects on post-hatching 
elongation between days 13 and 16 of pregnancy. In a 
follow-up study, multiple in vitro produced embryos 
were transferred to the oviduct of beef heifers that did or 
did not receive a P4 insert on day 3 after onset of 
oestrus. There was no effect of P4 on the proportion of 
embryos that developed to the blastocyst stage by day 7 
(Carter et al., 2010). 

The effects of elevated P4 shortly after 
conception on the advancement of conceptus elongation 
have been convincingly demonstrated in cattle and 
sheep. Garrett et al. (1988b) administered 100 mg P4 on 
days 1, 2, 3 and 4 of pregnancy which increased 
concentrations of P4 in peripheral plasma on days 2 to 5 

and significantly larger conceptuses on day 14. Using a 
P4 implant on day 3 of pregnancy, Carter et al. (2008) 
significantly elevated concentrations of P4 in plasma 
until day 8 and this was associated with larger 
conceptuses recovered at slaughter on day 16. Similarly, 
when ewes received daily injections of 25 mg P4 from 
36 h post-mating, blastocyst diameter increased by 
220% on day 9 and at the time of initiation of 
elongation of blastocysts to a filamentous conceptus on 
day 12 was advanced (Satterfield et al., 2006); these 
effects of P4 treatment on blastocyst development were 
blocked by administration of RU486, a PGR antagonist. 

As mentioned above, using a combination of in 
vitro embryo production and in vivo embryo transfer 
techniques, we have shown that the effect of P4 on 
conceptus development is mediated exclusively via the 
endometrium (Clemente et al., 2009). Interestingly, the 
embryo does not need to be present in the uterus during 
the period of P4 elevation in order to benefit from it 
(Clemente et al., 2009), strongly suggesting that the 
effect of P4 is via advancement of the normal temporal 
changes that occur in the endometrial transcriptome 
(Forde et al., 2009) resulting in advanced conceptus 
elongation. In addition, reducing the output of P4 from 
the CL, for example, by treatment with prostaglandin 
F2α (Beltman et al., 2009b; Forde et al., 2011a, 2012) 
or by aspirating the contents of the preovulatory follicle 
just before the expected time of ovulation (O'Hara et al., 
2012) results in a delay in the temporal changes in the 
endometrial transcriptome resulting in delayed 
conceptus elongation in vivo. 

Barnwell et al. (2015) examined the effect of 
embryo source (in vitro vs. in vivo derived) and 
recipient P4 concentration at the time of embryo transfer 
on conceptus development on day 17. They reported no 
relationship between P4 concentration on day 7 at the 
time of embryo transfer and conceptus length on day 17. 
Strangely, when only longer conceptuses were 
considered, heifers with in vitro produced embryos had 
lower P4 than those with in vivo derived embryos. In 
contrast, Frade et al. (2014) reported that higher plasma 
P4 concentration at timed embryo transfer was 
associated with increased pregnancy rate in in vitro-
produced embryo recipients. 
 

Asynchronous embryo transfer 
 

The regulatory effect of the uterus on bovine 
conceptus development, and the role played by P4, has 
been beautifully illustrated in studies comparing the 
outcome of synchronous and asynchronous embryo 
transfer. Such synchrony between the needs of the 
developing embryo and uterine secretions has long been 
recognized as being critical to the successful 
establishment of pregnancy (Pope, 1988). Indeed, 
embryo transfer studies in sheep and cattle have clearly 
demonstrated a need for close synchrony between 
embryo and the uterine environment of the recipient. 
Previous studies have established that pregnancy rates 
are reduced when embryos are greater than 48 h from 
synchrony with the recipient's uterine environment 
(Moore and Shelton, 1964; Rowson and Moor, 1966;
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Rowson et al., 1972).  
Asynchronous transfer of day 7 bovine 

blastocysts to the uteri of day 5 or day 9 recipients 
resulted in retarded (5.4 ± 0.4 mm) or advanced (50.4 ± 
5.2 mm) conceptuses on day 14, respectively, compared 
to synchronous controls (day 7 to day 7: 15.7 ± 1.5 mm) 
or conceptuses derived from AI (12.0 ± 3.3 mm; 
Ledgard et al., 2012). Consistent with these 
observations, Geisert et al. (1991) reported that only 1 
of 21 (4.8%) day 8 bovine blastocysts transferred to a 
day 5 uterus established pregnancy compared to 50% in 
synchronous controls. 

Administration of P4 early in the estrous cycle 
of the recipient has been shown in some cases to 
effectively advance uterine receptivity for the transfer of 
older asynchronous embryos. In sheep, day 6 recipients 
after early exposure to exogenous P4, supported 
development of transferred day 10 blastocysts (Lawson 
and Cahill, 1983). In cattle, embryo transfer to P4-
treated recipients (100 mg/day from day 1 to day 4) 
which showed estrus 72 h after the donor cows (i.e., day 
8 blastocysts transferred into a day 5 uterus) resulted in 
pregnancy rates at day 35 similar to those of 
synchronous (±12 h) recipients (42.1 vs. 50%), while, as 
mentioned above, only approximately 5% of day 5 
asynchronous recipients became pregnant (Geisert et al., 
1991).  

Similar data have been reported recently by 
Randi et al. (2015) who transferred multiple day 7 
bovine blastocysts to synchronous (day 7) or 
asynchronous (day 5 or day 9) recipients (n = 10 per 
recipient). Transfer of day 7 blastocysts to a day 5 
uterus resulted in fewer conceptuses surviving (20%) 
and delayed elongation in those that were recovered. In 
contrast, transfer to an advanced day 9 uterine 
environment resulted in the same level of survival as 
synchronous controls (~50%), but conceptus elongation 
was markedly advanced, in agreement with the 
observations of (Ledgard et al., 2012). Supplementation 
of day 5 recipients with P4 from day 3 increased 
circulating concentrations of P4 and increased 
conceptus length compared to day 5 controls; however, 
supplementation with P4 reduced the length of estrous 
cycles in approximately 50% of heifers. 

Together, these studies indicate that P4 
stimulates changes within the uterine environment 
which regulate receptivity and promote embryo survival 
and conceptus elongation. Manipulating P4 may be one 
way of strategically regulating the temporal changes 
that normally occur in the uterine environment in order 
to allow flexibility in the timing of embryo transfer. 
Given the above results indicating that transfer to an 
advanced uterus (i.e., uterus ahead of the embryo), 
which has had longer exposure to P4 results in an 
advancement in conceptus elongation and that such 
advanced conceptuses produce more IFNT (Kerbler et 
al., 1997; Rizos et al., 2012), one could reasonably 
hypothesize that transfer to an advanced uterus would 
result in improved pregnancy rates. However, 
interrogation of data from commercial embryo transfer 
operations does not support that hypothesis (Wright, 
1981; Donaldson, 1985; Hasler et al., 1987; Heyman, 

1988; Hasler, 2001; Rodrigues et al., 2003; Randi et al., 
2015). For example, in the study of Randi et al. (2015), 
4749 recipients received a single in vitro produced fresh 
blastocyst. Overall pregnancy rate was 43.5%, which is 
about the norm in such commercial IVF operations. 
Transfer of a day 7 blastocyst to a synchronous day 7 
uterus resulted in a pregnancy rate of 47.3%. Transfer to 
a uterus one day behind (day 6: 46.6%) did not affect 
pregnancy rate. However, transfer to a day 5 (40.8%) or 
a day 8 (41.3%) uterus moderately impacted pregnancy 
rate while transfer to a uterus 2 days in advance (day 9: 
24.4%) or 3 days behind (day 4: 27.0%) dramatically 
reduced pregnancy rates compared to results from 
synchronous transfer of blastocysts. Taking results of all 
of these studies together, it is clear that the accelerated 
conceptus elongation associated with transfer of a 
blastocyst to an advanced uterus does not necessarily 
translate into an improved pregnancy rate; rather, once 
synchrony is exceeded by approximately 48 h, 
pregnancy rates decline appreciably. 
 

Supplementation of progesterone and pregnancy 
rate 

 
Results of several retrospective studies have 

indicated a positive relationship between circulating 
concentrations of P4 in the week after breeding and 
subsequent pregnancy rate (Stronge et al., 2005; Diskin 
et al., 2006; Parr et al., 2012). Interestingly, there is 
both a linear and quadratic component to this 
relationship; that is, too much P4 may lead to a decline 
in pregnancy rate. Thus, both sub-and supra-optimal 
concentrations of P4 from days 4 to 7 after AI or a sub-
optimal rate of increase in the concentration of P4 
during this interval are negatively associated with 
embryonic survival. Cummins et al. (2012) reported that 
circulating concentrations of P4 were 34% greater in 
cows with similar genetic merit for milk production 
traits, but with extremes of good (Fert+) or poor (Fert-) 
genetic merit for fertility traits. In a follow-up study, 
Moore et al. (2014) investigated the factors affecting 
circulating concentrations of P4 in those cows. 
Concentrations of P4 were measured from days 1 to 13. 
CL volume was 41% greater and mean circulating 
concentrations of P4 were 79% greater in Fert+ cows 
compared with Fert- cows. The results indicate that 
greater circulating concentrations of P4 were primarily 
due to a greater capacity of CL to secrete P4 rather than 
differences in clearance rate of P4 in this lactating cow 
genetic model of fertility. 

Ultimately, circulating concentrations of P4 are 
determined by the balance between the rate of P4 
production by the CL and the rate of P4 metabolism, 
mainly by the liver. Production of P4 is mainly 
regulated by the number of large luteal cells (LLC) and 
constitutive production of P4 by these cells which in 
turn is dependent on the provision of sufficient 
cholesterol substrate, mainly in the form of high-density 
lipoprotein (HDL). Increasing the number of granulosa 
cells and thereby the number of LLC , by ovulation of 
larger or multiple follicles, results in increased P4 
output by the CL. Circulating HDL may be manipulated
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by diet and this has been used as a strategy to increase 
P4 (Cordeiro et al., 2015). Metabolism of P4 is 
primarily related to the rate of blood flow to the liver 
(Sangsritavong et al., 2002) and is affected by the 
physiological condition of the cow. Therefore, practical 
strategies aimed at changing inherent CL capacity 
through genetic selection (Cummins et al., 2012; Butler, 
2013; Moore et al., 2014) or the manipulation of 
circulating concentrations of P4 will be most productive 
by focussing on increasing luteal tissue volume to 
increase P4 production and/or limiting P4 metabolism 
(Wiltbank et al., 2014). 

In a study in which inseminated cows were 
blood sampled on week 5 of presumed pregnancy, 50% 
of cows with P4 < 2.8 ng/ml aborted before week 9 of 
gestation and 95% of cows with P4 of 6.0 ng/ml on 
week 5 maintained pregnancy (Starbuck et al., 2004). 
Kenyon et al. (2013) determined P4 concentration from 
days 4 to 28 relative to presumptive estrus necessary for 
maintenance of pregnancy in lactating Holstein cows. 
An early rise in P4 from day 0 to 14 was associated with 
establishment of pregnancy after embryo transfer. Cows 
with P4 concentration <5 ng/ml on day 14 were more 
likely to lose pregnancy from day 28 to 63. Faster rise in 
P4 concentration during the metestrus and early diestrus 
are associated with pregnancy establishment following 
embryo transfer, which suggests that early rise in P4 
concentration has an indirect effect on embryo 
development through modulation of uterine 
environment and secretion of histotroph. Furthermore, 
the positive effects of early rise in P4 concentration 
appear to go beyond the phase of maternal recognition 
of pregnancy through adhesion and placentation stages. 

Given the importance of P4 for pregnancy 
establishment and the known effects on uterine 
receptivity and conceptus development many 
researchers have attempted to manipulate P4 using a 
variety of strategies in the days immediately post-
conception in order to improve conception rates. 
Clearly, increasing concentrations of P4 after ovulation 
stimulates conceptus elongation in beef heifers, dairy 
cows, and sheep. However, supplementation of cattle 
with P4 during early pregnancy has resulted in mixed 
outcomes in terms of embryonic survival (Beltman et 
al., 2009a; Parr et al., 2014).  

Based on the demonstration that elevated P4 
accelerates conceptus development and that larger 
conceptuses produce more IFNT, one could reasonably 
hypothesize that such advanced conceptuses would be 
more likely to establish pregnancy. However, data on 
the impact of post insemination supplementation of P4 
on pregnancy rate are conflicting and, at best, indicate a 
modest positive response. For example, in one recent 
large study, Nascimento et al. (2013) reported the 
results of 2 separate analyses that evaluated the effect of 
hCG treatment post-AI on fertility in lactating dairy 
cows. The first study was a meta-analysis of 10 different 
published studies that used hCG treatment on days 4 to 
9 post-AI in lactating dairy cows. Overall, hCG 
administration increased pregnancies per artificial 
insemination (P/AI) by 3 percentage points [34% 
(752/2,213) vs. 37% (808/2,184)]. In a subsequent field 

trial, lactating Holstein cows (n = 2,979) from 6 
commercial dairy herds received hCG or not on day 5 
after a timed AI Pregnancies per AI were greater in 
cows treated with hCG (40.8%) than control (37.3%) 
cows. Interestingly, the positive effect of hCG (overall 
approximately 3.5%) was restricted to first-lactation 
cows. 

A variety of strategies can be used to increase 
peripheral P4, ranging from those that stimulate 
endogenous production such as: (i) manipulation of 
follicular development to increase the size of the 
preovulatory follicle and hence the CL (Baruselli et al., 
2012; Mesquita et al., 2014; Ramos et al., 2015); (ii) 
direct stimulation of CL development with luteotrophic 
agents (Maillo et al., 2014); (iii) induction of accessory 
CL using appropriately timed administration of GnRH 
or hCG (Santos et al., 2001; Stevenson et al., 2007; De 
Rensis et al., 2010; Lonergan, 2011; Torres et al., 
2013); or (iv) direct supplementation with exogenous P4 
through injections (Garrett et al., 1988b; Geisert et al., 
1991; Pugliesi et al., 2014) or P4-containing devices 
(Stevenson et al., 2007; Carter et al., 2008; O'Hara et 
al., 2014b, c). 

Paradoxically, depending on the timing of 
administration, exogenous P4 can have a negative effect 
on CL lifespan resulting in short inter-oestrous periods 
due to premature CL regression (Ginther, 1970; Garrett 
et al., 1988a; Burke et al., 1994) while at the same time 
advancing conceptus development due to the changes 
induced in the endometrium (O'Hara et al., 2014a). This 
situation is clearly not compatible with successful 
maintenance of pregnancy. It is possible that a 
combination of exogenous P4, to induce the required 
stimulation of the endometrium and conceptus, and 
luteotrophic support, such as that provided by hCG, to 
avoid early CL regression, would provide a means of 
optimizing maternal recognition of pregnancy. Indeed, 
administration of hCG at the time of P4 injections on 
days 1 to 4 overcame the negative effect on CL lifespan 
(Ginther, 1970). In support of this notion, in a recent 
study (O'Hara et al., 2014b), administration of eCG, a 
glycoprotein secreted by the endometrial cups of 
pregnant mares with a relatively long half-life of about 
2-3 days and with both LH- and FSH-like properties in 
cattle, to beef heifers on day 3 post oestrus in 
association with an intravaginal P4 insert reduced the 
number of short cycles and increased mean luteal tissue 
weight and circulating P4. However, the numbers of 
heifers involved was small.  

We have recently shown that a single i.m. 
injection of hCG as early as day 2 or day 3 after oestrus 
resulted in a larger CL and increased circulating 
concentrations of P4 compared to controls (Maillo et al., 
2014). However, the results of Souza et al. (2015) 
examining the effect of administration of long-acting 
injectable P4 (LAP4) and/or hCG on luteal function and 
conception rate of high producing dairy cows (n = 982) 
would suggest that this does not translate into improved 
pregnancy rates. Cows were assigned to one of four 
groups: (i) control; (ii) 900 mg LAP4; (iii) 2000 IU 
hCG; (iv) a combination of LAP4 and hCG. While 
treatments resulted in elevated P4, conception rate after
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30 days was higher in the LAP4 group, but not in the 
hCG or LAP4 + hCG groups. Conception rates at 60 
days, as well as pregnancy loss between 30 and 60 days 
after TAI were not affected by treatment. 
 

Final remarks 
 

One consistent observation from the multiple 
embryo transfer studies we have carried out, involving 
the transfer of 10-20 day 7 blastocysts to the uterus of 
synchronized recipients and recovery on day 14, is the 
variation in conceptus size on day 14, even amongst 
those recovered from the same uterus. Such differences 
in conceptus length on the same day of gestation may be 
related to an inherent lack of developmental 
competency or may simply be a consequence of 
asynchrony with the maternal environment. It would 
suggest that factors intrinsic to the blastocysts 
transferred regulate development, at least in part, and 
would be consistent with the hypothesis that the quality 
of the oocyte regulates developmental competence 
(Rizos et al., 2002).  

Our current studies are aiming to understand 
the underlying factors that regulate conceptus 
elongation and to attempt to separate those intrinsic to 
the conceptus from those intrinsic to the uterus. In this 
regard, Barnwell et al. (2016) recently characterized 
differential patterns of mRNA expression between short 
and long bovine conceptuses recovered on day 15 of 
gestation which may be indicative of conceptus 
survival. 
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