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Abstract 
 

The enormous technological progress in the 
field of functional genomics during the last 15 years had 
a significant impact on animal sciences. With the 
development of Next Generation Sequencing it became 
feasible to analyze genomes and transcriptomes within 
short time frames and affordable costs. One major 
challenge of this rapid development is to manage the 
data flood and to perform data analysis and integration 
in an optimal manner. This review provides some 
information about a typical analysis pipeline for RNA-
Sequencing (RNA-Seq) data and a strategy for the 
analysis of small RNA-Seq data derived from species 
with poor annotation for non-coding RNA genes. 
Furthermore, problems regarding gene annotation in 
livestock species and their possible implications for data 
analysis and interpretation are discussed. Despite of not 
yet solved problems and challenges with respect to data 
analysis and integration the approaches in the field of 
functional genome analysis opened up new ways to try 
to understand the complex trait fertility. 
 
Keywords: animal breeding, bioinformatics tools, 
biology of reproduction, deep sequencing, Galaxy 
project.  
 

The impact of functional genomics on life science 
research 

 
The tremendous technological advances in the 

field of functional genomics during the last decades had 
a strong impact on research in animal sciences. This is 
reflected, e.g., by a dramatic increase of the number of 
publications containing respective keywords (Fig. 1). 
The first wave started with the broad application of 
DNA microarrays end of the nineties, and a similar rise 
is observed for studies using RNA sequencing (RNA-
Seq). With respect to livestock the increase of the 
number of published transcriptome studies showed a 
shift of two to three years. 

The development of Next Generation 
Sequencing (NGS) facilitated the analysis of genomes 
and transcriptomes in an extremely short time at 
affordable costs (Goodwin et al., 2016). With the 
newest instruments for the generation of so-called 
“short reads” (up to 2X 150 bp, Illumina HiSeq 4000) it 
is currently possible to obtain up to 1.5 Tera bases 
corresponding to 5 billion reads per run or 12 genomes 
or 100 transcriptomes or 180 exomes per instrument run 
which takes 3.5 days. Furthermore, Third Generation 
sequencers deliver extremely long reads and can be used 

to sequence full-length RNA molecules (messenger as 
well as long non-coding RNAs) or to bridge longer 
repetitive genomic sequences to fill the gaps of the 
current versions of genome sequence assemblies 
(Goodwin et al., 2016). But also in the field of proteome 
analysis, the techniques have advanced, particularly 
mass spectrometric methods. Improvement has been 
achieved mainly with respect to sensitivity and 
quantification (Zhang et al., 2014a, b). Furthermore, 
NGS techniques have been refined in order to analyze 
tiny amounts of RNA or DNA. Whereas early RNA-Seq 
library preparation protocols needed starting material 
(total RNA) in the microgram range, modern standard 
protocols start from 100 ng of total RNA. Special 
protocols were developed to perform RNA-Seq even for 
a few or single cells such as oocytes and early embryos 
but also with parts of neuronal cells (Liu et al., 2014; 
Hrdlickova et al., 2016; Marr et al., 2016).  

With this rapid development, particularly for 
NGS, a big challenge came up with respect to data 
analysis, interpretation, and integration (Rajasundaram 
and Selbig, 2016; Sun and Hu, 2016; Suravajhala et al., 
2016). More and more data sets are generated for the 
analysis of gene expression at the level of RNA and 
proteins as well as for the genome-wide identification of 
sequence variants correlating with the trait fertility 
(Bauersachs, 2014; Bauersachs and Wolf, 2015). The 
combination of data from genome-wide association 
studies (GWAS) or quantitative trait locus (QTL) 
studies with corresponding data derived from gene 
expression analyses has a great potential to improve the 
understanding of the trait fertility with respect to the 
effects of sequence variations on gene expression 
regulation. A number of attempts to integrate these data 
have been performed for cattle (Pimentel et al., 2011; 
Minten et al., 2013; Moore et al., 2016). 

In addition to the classical gene products 
mRNA and protein also non-coding RNA molecules are 
investigated which mainly have a role in regulation of 
gene expression (Bidarimath et al., 2014; Kotaja, 2014). 
Particularly, microRNAs (miRNAs), short non-coding 
regulatory RNAs, play a major role in the regulation of 
gene expression mainly at the level of repression of 
translation of specific target mRNAs as well as mRNA 
degradation (Krol et al., 2010). The expression of 
miRNAs in endometrium and in the embryo/conceptus 
has already been investigated in a number of studies 
(Ponsuksili et al., 2014; Krawczynski et al., 2015a, b). 

For various reasons, such as not well 
standardized data analysis pipelines, incomplete genome 
sequence assemblies for livestock species, and 
incomplete gene annotation the analysis and the 
comparability of different data sets is complicated. This
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is even more complicated if omics data has been 
generated in different labs using various technological 
platforms (Bauersachs, 2014). To solve these problems 
will be one of the main tasks for future research if the 

scientific community is interested in exploiting the 
potential of omics studies and in a real progress in the 
field, i.e., the understanding of fertility as a complex 
trait. 

 

 
 
Figure 1. Pubmed search for abstracts containing keywords related to transcriptome analyses. RNA-Seq: keyword 
“RNA-Seq”; Microarray: keyword “microarray”; Microarray+bovine: keywords “microarray”, “bovine”, “Bos 
taurus”, “cattle”; RNA-Seq+bovine: keywords “RNA-Seq”, “bovine”, “Bos taurus”, “cattle”; Reproduction-related: 
using a combination of keywords for transcriptome analysis, livestock species, and reproductive organs. 
 
Typical data analysis pipeline and statistical analysis 
 

A typical data analysis pipeline for RNA-Seq 
data comprises several steps starting from the obtained 
sequence reads (Fastq files). Usually, the sequence 
reads are first trimmed based on quality scores (e.g. 
with Trimmomatic), i.e., bases with low quality at the 
ends (mainly found at the 3’ end) are removed. Since 
RNA-Seq libraries often contain a certain percentage of 
cDNA inserts shorter than the read length, some reads 
run into the adapter sequence which has to be removed 
using a respective tool. To get information for the 
quality of the sequence data, Fastq files are checked 
before and after processing steps (e.g. FastQC) to ensure 
that all files have a comparable quality and to identify 
potential sequencing artifacts. After these data 
processing steps, the remaining reads are usually 
mapped to a reference genome or a transcriptome. The 
first is usually performed by the use of a spliced read 
mapper, e.g., Tophat2 (Kim et al., 2013) or HISAT 
(Kim et al., 2015). After assigning the sequence reads to 
a specific location in the genome the reads are counted 
for each exon, transcript or each gene. This can be 
performed on the basis of available gene annotation 
from NCBI or Ensembl. Alternatively, the data itself 
can be used to complement existing gene annotation 
using tools like Cufflinks or StringTie (Trapnell et al., 

2012; Pertea et al., 2015). In the first years of RNA-Seq 
data analysis most of the tools were only available in 
command line mode running on Linux systems. With 
the integration into the Galaxy platform, a web browser-
based genome analysis tool (Blankenberg et al., 2010), 
complex large-scale analyses can be performed without 
informatics or programming expertise (Giardine et al., 
2005). Finally, these steps result in a read count table 
that is used for analysis of differential gene expression. 
Widely used tools for the analysis of read count data 
and the identification of differentially expressed genes 
(DEG) are the BioConductor R packages EdgeR 
(Robinson et al., 2010) and DESeq2 (Love et al., 2014). 
Since a local installation of Galaxy on a LINUX server 
is necessary to analyze bigger data sets such as RNA-
Seq data an alternative way is to do the complete 
analysis of RNA-Seq data by the use of R and 
BioConductor on a desktop computer (Anders et al., 
2013). 
 

Analysis of small RNA-Seq data sets with special 
adaptation to poorly annotated species 

 
For the analysis of small RNA-Seq data sets a 

modified analysis pipeline is needed compared to the 
basic analysis pipeline for RNA-Seq data since the 
resulting reads represent, at least in theory, the entire
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sequence of a small ncRNA. The typical processing 
steps of the FastQ files starting with quality control up 
to adapter clipping are similar. However, the use of 
spliced mappers like TopHat2 (Kim et al., 2013) or 
HISAT (Kim et al., 2015) for the analysis of 
smallRNA-Seq data sets is not appropriate because 
small RNAs are usually neither spliced nor found in 
coding regions of annotated genes. This leads to the 
necessity of a different mapping and sequence 
annotation strategy. For example, mapping to a 
reference genome using the Burrows-Wheeler 
Alignment tool (BWA; Li and Durbin, 2009) to map 
against a reference genome or NCBI BLAST (Altschul 
et al., 1997) for short sequences which is also available 
in Galaxy (Blankenberg et al., 2010) are suitable 
options. The BWA aligner works best for well 
annotated genomes where almost all short ncRNAs are 
known. So, the obtained sequences are just mapped to 
the corresponding genes and miRNA sequences 
(canonical and isomiRs) can be easily analyzed with 
tools like miRDeep2 (Friedlander et al., 2012). Because 
the BLAST algorithm is too slow for the analysis of too 
high numbers of sequence comparisons the number of 
unique sequences found in smallRNA-Seq libraries have 
to be appropriately filtered, e.g., based on a counts per 
million (CPM) cut-off, to reduce the number of 
sequences from hundreds of thousands or even millions 
to several thousand. This filtering removes at the same 
time sequences without biological relevance or 
sequences which are very likely to be the result of 
sequencing artifacts. An example for this data analysis 
strategy is shown in Fig. 2. 

A challenging problem for livestock species 
including pig and cattle is the rather low number of 
annotated small ncRNAs, which complicates the use of 
BWA for mapping and miRDeep2 for identification of 
miRNAs. Furthermore, small RNA libraries usually 
contain also many other small RNAs in addition to 
miRNAs, such as fragments of ribosomal RNAs 
(rRNA), transfer RNAs (tRNA), small nucleolar RNAs 
(snoRNA), small nuclear RNAs (snRNA), and Piwi-

associated small RNAs (piRNAs) in case of germline 
cells (Cole et al., 2009). Although the prediction of 
novel miRNAs can be performed by the use of 
miRDeep2 (Friedlander et al., 2012), the annotation of 
sequence fragments derived from other RNA molecules 
is more difficult. In contrast in humans, a great variety 
of ncRNAs is known compared to other mammalian 
species. This information can be used to improve 
annotation of small RNA data from other species since 
many of these RNAs are highly conserved. The use of 
BLASTn-short (local installation in Galaxy) for 
sequence comparison to all available sequences for 
RNA molecules of the target species and the inclusion 
of ortholog information derived from well annotated 
species from different annotation sources significantly 
improves the annotation of identified sequences found 
in the small RNA-Seq results to 80-90%, depending on 
the species and the sample type (Jochen Bick, 2016; 
ETH Zurich; personal communication). The 
consideration of the frequent occurrence of sequences 
representing isoforms of miRNAs (isomiRs; 
Krawczynski et al., 2015a; Zhang et al., 2016) can 
further improve sequence annotation. IsomiRs result 
from imprecise and alternative cleavage during the pre-
miRNA processing and post-transcriptional 
modifications. The isomiRs show different miRNA 
stability, sub-cellular localization, and target selection 
(Zhang et al., 2016). Since post-transcriptional 
modification during miRNA processing also leads to the 
addition of nucleotides not matching to the genome 
sequence those isomiRs cannot be easily mapped using 
BWA and/or miRDeep2. Using the annotation strategy 
based on BLASTn searches following statistical data 
analyses can be performed including various types of 
small ncRNAs or miRNAs only. Furthermore, based on 
the attempt to annotate as much as possible of the 
obtained sequences, percentages of read counts in 
relation to the total number of read counts can be 
calculated for individual types of ncRNAs. This can 
also help to identify technical or biological outliers in a 
data set. 

 

 
 
Figure 2. Workflow for data analysis of small RNA-Seq data performed by the use of Galaxy tools. The workflow 
goes from left to the right and includes processing of sequence files, generation of a read count table, and annotation 
of the obtained sequences. Fastq: sequence files derived from Illumina sequencer; FastQC: tool for quality control of 
fastq files; Trimmomatic and FastqMcf: tools for processing fastq files; BLAST: Basic Local Alignment Search 
Tool. 
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Gene annotation in livestock 
 

The efforts to sequence the human genome 
(Lander et al., 2001) were extremely high and cost 
alone the US tax payer almost three billion dollars. In 
addition to the genome sequence itself large projects 
were performed to sequence full-length cDNAs from 
mRNA derived from almost all human tissues 
(Wiemann et al., 2001) to obtain information about 
transcribed regions in the genome, gene structures, and 
transcript isoforms. Meanwhile, genomes have been 
sequenced also for livestock species (Elsik et al., 2009; 
Wade et al., 2009; Groenen et al., 2012). However, 
gene annotation for these species is still based in large 
part on the comparison to human or mouse orthologous 
genes. In addition, different annotation pipelines, e.g., 
NCBI and Ensembl, provide gene models which show 
sometimes substantial differences making the correct 
assignment of genes annotated with different pipelines 
at the same genomic locus difficult. The corresponding 
information for the assignment of genes in Entrez Gene 
to genes in Ensembl is incomplete (NCBI->Ensembl) or 

incorrect (Ensembl->Entrez Gene). This is a serious 
problem if useful information such as ortholog 
annotation found in one database should be assigned to 
gene IDs of the other database. 

For the functional annotation and downstream 
bioinformatics analysis the use of gene IDs of livestock 
species is not optimal and leads to information loss. The 
reason for that is incomplete annotation, i.e., many 
genes still do not have the official gene symbol and are 
not assigned to functional annotation databases such as 
Gene Ontologies (Ashburner et al., 2000) and KEGG 
pathway database (Kanehisa and Goto, 2000). To avoid 
this loss of information the putative human ortholog 
information can be used. One resource for ortholog 
information is for example EnsemblCompara (Vilella et 
al., 2009; Pignatelli et al., 2016). In order to combine 
information derived from different databases provided by 
the NCBI and Ensembl we are developing a Mammalian 
Ortholog and Annotation database (MOA-Db) integrated 
in the Galaxy platform in our group (Jochen Bick, 2016; 
ETH Zurich; unpublished results). A schematic 
overview of the MOA-Db is shown in Fig. 3. 

 

 
 
Figure 3. Development of a Mammalian Ortholog and Annotation database (MOA-Db). Based on information 
derived from public databases and available RNA-Seq data sets an annotation database is built for a number of 
mammalian species including gene annotation from NCBI and Ensembl as well as ortholog information. The 
ortholog relationships are based on information extracted from databases such as EnsemblCompara as well as on 
crosswise global BLAST comparisons of all transcripts annotated at NCBI for each species. 
 

Conclusions 
 

The development of functional genomics 
approaches opened new ways to improve our 
understanding of the complex trait fertility. After the 
first wave of enthusiasm it is becoming more and more 
evident that there is a number of big challenges in the 
context of data analysis and integration. The main 

problems are inherent in missing standards for data 
analysis pipelines, integration of different kinds of data 
sets, bias in data sets related to different laboratories, 
protocols, and the use of different platforms. 
Furthermore, a particular challenge is the integration of 
results from different omics approaches, such as 
genome, transcriptome, proteome, and metabolome 
analysis. A major obstacle for the integration of omics



 Bauersachs. Strategies for NGS data analysis. 
 

Anim. Reprod., v.13, n.3, p.153-159, Jul./Sept. 2016 157 

data sets is the existence of a plethora of different 
databases and corresponding identifiers as well as 
incomplete, inconsistent, and not coordinated gene 
annotations, e.g., when comparing genome annotation at 
NCBI and Ensembl. In addition, an insufficient and/or 
erroneous gene or protein annotation leads to a 
significant loss of information and in the worst case to 
wrong data interpretation. Despite of all these problems 
and challenges, the development of the new sequencing 
technologies and the foreseeable even more exciting 
developments with respect to functional genomics 
technologies promise a new era of research in the 
animal sciences. 
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