# Isolation and identification of proteins from swine sperm chromatin and nuclear matrix

# Guilherme Arantes Mendonça<sup>1,3</sup>, Romualdo Morandi Filho<sup>2</sup>, Elisson Terêncio Souza<sup>2</sup>, Thais Schwarz Gaggini<sup>1</sup>, Marina Cruvinel Assunção Silva-Mendonça<sup>1</sup>, Robson Carlos Antunes<sup>1</sup>, Marcelo Emílio Beletti<sup>1,2</sup>

<sup>1</sup>Post-graduation Program in Veterinary Science, Federal University of Uberlandia, Uberlandia, MG, Brazil. <sup>2</sup>Post-graduation Program in Cellular and Molecular Biology, Federal University of Uberlandia, Uberlandia, MG, Brazil.

## Abstract

The aim of this study was to perform a proteomic analysis to isolate and identify proteins from the swine sperm nuclear matrix to contribute to a database of swine sperm nuclear proteins. We used prechilled diluted semen from seven boars (19 to 24 weekold) from the commercial line Landrace x Large White x Pietran. The semen was processed to separate the sperm heads and extract the chromatin and nuclear matrix for protein quantification and analysis by mass spectrometry, by LTQ Orbitrap ELITE mass spectrometer (Thermo-Finnigan) coupled to a nanoflow chromatography system (LC-MS/MS). We identified 222 different proteins in the sample; a total of 159 (71.6%) were previously described as present in the somatic or sperm nuclei of other species, 41 (18.5%) did not have a previously reported nuclear presence and 22 (9.9%) had not been characterized. The most abundant family of proteins corresponded to ribosomal (13.1%), followed by cytoskeleton (12.2%), uncharacterized (9.9%), histones (5.4%), proteasome subunits (3.6%) and heat shock (1.8%). The other proteins clustered in other families accounted for 54% of the total proteins. The protein isolation of the nuclear matrix of the swine spermatozoa was satisfactory, thus demonstrating that the protocol used was efficient. Several proteins were identified and described. However, it was not possible to identify some protein structures. Therefore, this study helps to establish a starting point for future proteomic studies comparing fertile and sub-fertile animals.

Keywords: epigenetic, mass spectometry, proteome, *sus scrofa*.

## Introduction

It has long been thought that the only function of sperm cells is to transmit the paternal genomic DNA to the next generation. This idea was challenged by the discovery of the imprinting of sex-specific genes mediated by DNA methylation differences (set during gametogenesis) that were epigenetically transmitted to the next generation (Oliva and Ballescá, 2012).

DNA condensation by sperm protamines leaves only a small fraction of the sperm genome accessible for DNA binding proteins, which are necessary to enable DNA replication and genes transcription. These sites may be the most important sites for the initiation of paternal genome functions in the early embryo (Yamauchi *et al.*, 2011). According to the same authors, these active sperm chromatin sites in protamine toroids may contain important epigenetic information for the developing embryo.

The isolated use of genomic and transcriptomic information may be insufficient to fully understand a complex organism because proteomics and transcriptomics can be discordant and DNA-RNA relationships cannot be fully correlated. Thus, measurements of other metabolic levels should also be obtained, such as the study of proteins (Wright et al., 2012). According to these same authors, large-scale protein research in organisms (i.e., the proteome-protein complement expressed by a genome) is equally important because it provides information about the real factors (i.e., enzymes) involved in the metabolic process. However, unlike other areas (i.e., genomics and transcriptomics), proteomics and its present techniques and strategies are still under development.

Proteomics projects related to studies of nuclear proteins in sperm have enabled the creation of catalogs. However, DeMateo *et al.* (2011) related that only small subsets of the identified proteins are nuclear proteins. The aim of this study was to perform a proteomic analysis to isolate and identify proteins from the swine sperm nuclear matrix to contribute to a database of swine sperm nuclear proteins.

## **Materials and Methods**

## Semen and sperm processing

Prediluted (diluent BTS) and cooled boar semen was used in this study, with concentration of 2.5 x  $10^9$  (80 ml/dose). The doses were stored in thermal chamber between 15 and  $18^{\circ}$ C. The semen was provided by an artificial insemination center located in Uberlandia, Minas Gerais, Brazil. We used semen from seven boars (19 to 24 week-old) from the commercial line Landrace x Large White x Pietran. The period between the collection and analysis ranges from 24 to 48 h. The breeders chosen were normally used by insemination center, where the resulting litters, borned to the date of collection, were within zootechnical levels proposed for the line in question.

Based on routine testing using the CASA system (computerized analysis of sperm), the boars presented semen with 84.63 to 93.54% of motility and 58.78 to 84.11% of progressive motility. We use the standard method for evaluation of sperm morphology,

<sup>&</sup>lt;sup>3</sup>Corresponding author: guilherme.mendonca@outlook.com Received: March 2, 2016 Accepted: March 23, 2017



which consisted of 200 cell count at 1000X magnification in phase contrast microscopy with immersion oil. It was observed defects of head, tail and curled tail, acrosome, midpiece, colon and proximal and distal citoplasmic drop. The rate of morphological defects (apart from the distal cytoplasmic drop) was 2.5 to 10.5%.

# Analysis of chromatin alterations using semen smears stained with toluidine blue

All semen was evaluated by the toluidine blue technique (Beletti *et al.*, 2005) to determine whether the boars in question had normal sperm with respect to condensation of chromatin and the morphology of the sperm head.

The samples of boar semen were fixed using formalin citrate (2 drops of semen to 1 ml of formaldehyde citrate). A drop of sample was fixed in two smears and subsequently air dried at room temperature. These smears were subjected to acid hydrolysis in 4N hydrochloric acid for 20 min and washed in distilled water. After drying, the smears were stained with a drop of 0.025% toluidine blue (pH 4.0) in phosphate-citric acid buffer (McIlvaine buffer) on the slide, followed by placement of the coverslip. After three minutes, 50 digital images in grayscale were captured from each slide using a Leica DM500 optical microscope coupled with a Leica ICC 50 camera (Wetzlar, Germany) with an oil immersion lens at 100X magnification. Digital images were used to segment by thresholding 100 sperm heads from each slide.

The samples were analyzed using routines developed in the SCILAB environment to obtain the mean and standard deviation of the pixel values within the head of each image. To obtain a reference for the normal color of the sperm head, six sperm heads that were the most homogeneous and had a lighter color (i.e., the sperm was more homogeneous and intensely compacted) were automatically selected in each smear. The average pixel values of these heads were used as the reference value for the normal staining of the sperm (standard head). Then, the differences between the average values of the standard heads and the average values of each head examined were determined for each image. This difference was transformed into a percentage (% unpacking) based on the average value of the standard heads. The coefficient of variation (heterogeneity %) of the gray levels was also calculated (Beletti et al., 2005).

## Sperm head segregation

The methodology used to segregate the sperm heads was modified from a previous study (Morandi-Filho, 2013). Each semen sample (4 ml) cooled to 2 to 8 degrees Celsius (C) was placed in 15 ml conical bottom tubes containing 8 ml of buffer (50 mM Tris-HCl, pH 7.5, and 1 mM EDTA). The flask was homogenized and centrifuged at 750 x g for 15 min at 4°C, followed by removal of the supernatant. The pellet was resuspended in 8 ml of the same buffer, homogenized and centrifuged again. This procedure was repeated three times.

After the third centrifugation, the pellet was resuspended in 1.5 ml of the same buffer. The material was sonicated on ice for 10 min with 30 s pulses and intervals of 5 s. Subsequently, the material was centrifuged at 1000 x g for 15 min at 4°C, the supernatant was removed, and 2 ml of buffer (50 mM Tris-HCl and 1.1 M saccharose, pH 7.5) was added.

Part of this material was diluted 1:100 in distilled water for counting in a Neubauer chamber to measure the concentration of the heads in the sample. Then, the concentration was adjusted to  $1 \times 10^7$  head/ml using 50 mM Tris-HCl buffer with 1.1 M saccharose (pH 7.5).

The heads were isolated from the tails using ultracentrifugation at 75,600 x g for 45 min at 4°C in a gradient consisting of 2 ml of cesium chloride (2.82 M cesium, 25 mM Tris-EDTA, 5 mM MgCl2 and 0.5% Triton X-100) at the bottom of a 12 ml ultracentrifuge tube that was overlaid with 4 ml of 2.2 M saccharose and covered with 2 ml of the sample in 50 mM Tris-HCl and 1.1 M saccharose (pH 7.5). After centrifugation, the supernatant containing the tails was carefully removed by pipetting. The bottom sediment was resuspended in 25 mM Tris buffer and washed three times by centrifugation at 1000 x g for 30 min at 4°C in 25 mM Tris buffer to remove the excess cesium chloride. After this process, a smear was made of a drop of the sample. The smear was dried in an oven for 15 min, stained with xylidine for 15 min and washed with distilled water to evaluate the purity of the sample relative to the absence of tails. The purity was approximately 95% according to visual evaluation by light microscopy based on counting 100 cells in a field.

#### Extraction of chromatin and the nuclear matrix

The extraction of chromatin and the nuclear matrix followed the methodology adapted from Codrington *et al.* (2007). The isolated heads were resuspended in 500  $\mu$ l of a solution containing 1% Triton X-100, 50 mM Tris-HCl (pH 7.5), 1 mM EDTA, and 5  $\mu$ l of protease inhibitor cocktail (Sigma Aldrich P8340/011M4000) and vortexed for 10 min at room temperature. This treatment removed the acrosome and all membranes while leaving the nucleus condensed and connected to the nuclear envelope and some vestige of the perinuclear material.

The samples were washed three times by centrifugation at 1100 x g for 30 min with 1.5 ml of 50 mM Tris-HCl (pH 7.5). After the last wash, the material was resuspended in 500  $\mu$ l of decondensation buffer consisting of 40 mM 1,4-dithiothreitol (DTT), 0.25 M (NH<sub>4</sub>)<sub>2</sub>S<sub>4</sub>, 25 mM Tris-HCl (pH 7.5), and 5  $\mu$ l of a protease inhibitor cocktail and incubated for 40 min at room temperature. Then, 4000U of RNAse-free deoxyribonuclease I was added and the samples were homogenized for 60 min under a vortex at room temperature. Finally, the samples was frozen, lyophilized and stored in a freezer prior to processing for mass spectrometry.



# Protein quantification

At this point the lyophilized samples were mixed, and from here they were processed as single sample. Initially, the lyophilized sample was resuspended in 100 µl of 0.1 M Tris-HCl buffer (pH 8.8) containing 8 M urea. The Bradford method (Bradford, 1976) with the Protein Assay Dye Concentrate Reagent (Bio-Rad, Hercules, California, USA) was used for protein quantification. The standard curve was performed using different dilutions of bovine serum albumin prepared from a commercially acquired stock (200 mg/ml protein standard, Sigma, St. Louis, Missouri, USA). The sample was distributed in triplicate in microplates. The absorbance at 595 nm was read in a spectrophotometer (Molecular Devices, SpectraMax Plus 384). The quantification of protein by the Bradford method indicated concentration of 3.4 mg/ml.

## Sample preparation

The sample preparation for mass spectrometry consisted of three main steps: i) reduction and alkylation of proteins, ii) enzymatic digestion of the proteins with trypsin and iii) clean up/desalting of the samples. We used 38  $\mu$ l of each sample (50  $\mu$ g). Briefly, the sample was subjected to the reduction of disulfide bonds of the protein by the addition of DTT (dithiothreitol) in a proportion of 1 mg DTT/mg protein and incubated for 2 h at room temperature. Then, alkylating IA (iodoacetamide) was added in a proportion of 3 mg IA/mg of protein and incubated for 1 h at room temperature in the dark. The volume of the sample was diluted 5-fold in a 0.1 M solution of ammonium bicarbonate (pH  $\ge$  8,0) to obtain a final volume of 500  $\mu$ l. The sample was incubated with 1  $\mu$ g of trypsin (Promega, Madison, Wiscousin, USA) at 37°C overnight. Prior to application of the sample into the mass spectrometer, clean-up/desalting of the sample was performed using the OASIS HLB cartridge 1 cc column according to the manufacturer's instructions. The column was equilibrated with a 5% acetonitrile solution containing 0.1% formic acid, and elution of the material of interest was performed with 80% acetonitrile. The sample was dried in a speed vac and applied to a mass spectrometer.

## Mass spectrometry analysis

The digested sample was dried and analyzed in the LTQ Orbitrap ELITE mass spectrometer (Thermo-Finnigan) coupled to a nanoflow chromatography system (LC-MS/MS). The acquired data were automatically processed by the Computational Proteomics Analysis System (CPAS; Rauch, 2006). The identified peptides were grouped into proteins using the algorithm Protein Prophet, and a list of identifications with error rates less than 2.0% was created. A general database of all species was used (Uniprot, 2016).

#### Statistical analysis

Descriptive statistical analyses were performed on the presented data.

#### Results

## Toluidine blue method

The toluidine blue method was used to analyze the chromatin in 195 sperm heads of each boar. The averages were: unpacking chromatin (%)  $2.46 \pm 1.73$  and heterogeneity of chromatin (%)  $4.49 \pm 0.94$ .

## Proteins found

In the mass spectrometry analysis, 222 different proteins were identified in the sample (Table 1); a total of 159 of these (71.6%) were previously described as being present in the somatic or sperm nuclei of other species (Uniprot, 2016), 41 (18.5%) had no previously described nuclear presence and 22 (9.9%) were uncharacterized.

## Proteins families

The most abundant family of proteins corresponded to ribosomal (13.1%, 29 of 222), followed by cytoskeleton (12.2%, 27 of 222), uncharacterized (9.9%, 22 of 222), histones (5.4%, 12 of 222), proteasome subunits (3.6%, 8 of 222 and heat shock (1.8%, 4 of 222). The other proteins clustered in other families accounted for 54% of the total proteins (120 of 222).

Table 1. Proteins identified in isolated swine sperm nuclear chromatin containing the molecular mass (MM), number of peptides (N° Peps), associated gene name (Gene name), associated family (Family- OF: other families; R: ribosomal; UC: uncharacterized; C: cytoskeleton; H: histone; PS: proteasome subunits and HS: heat-shock), description and possible nuclear presence (Nuclear presence).

| MM (Da) | N° Peps | Gene name    | Family | Description                 | Nuclear  |
|---------|---------|--------------|--------|-----------------------------|----------|
|         |         |              |        |                             | presence |
| 132204  | 218     | LOC100626209 | UC     | Uncharacterized             | NO       |
| 62621   | 140     | FAM71B       | OF     | Protein FAM71B              | YES      |
| 11807   | 105     | PRM2         | OF     | Protamine-2                 | YES      |
| 24236   | 82      | RAB2B        | OF     | Ras-related protein Rab-2B  | YES      |
| 87427   | 75      | ODF2         | С      | Outer dense fiber protein 2 | NO       |
| 29526   | 67      | ODF1         | С      | Outer dense fiber protein 1 | NO       |
| 66818   | 66      | CCIN         | С      | Calicin                     | YES      |

| (D) | Mendonça <i>et al</i> . Proteins from swine sperm chromatin. |
|-----|--------------------------------------------------------------|
|     |                                                              |

-

| $MM(D_{\alpha})$ | Nº Dona              | Cono nomo       | Family | Description                                          | Nuclear  |
|------------------|----------------------|-----------------|--------|------------------------------------------------------|----------|
| wivi (Da)        | IN <sup>®</sup> Peps | Gene name       | ramily | Description                                          | nuclear  |
| 72172            | ()                   | CVI C1          | C      |                                                      | presence |
| /31/3            | 64                   | CYLCI           | C      |                                                      | YES      |
| 16837            | 61                   | LOC100522926    | UC     | Uncharacterized                                      | NO       |
| 1934             | 57                   | GPX4            | OF     | Phospholipid hydroperoxide Glutathione<br>peroxidase | YES      |
| 35571            | 54                   | FNDC8           | OF     | Fibronectin Type-3 domain-containing                 | NO       |
| 27420            | 50                   | CSTM2           | OE     | protein 8<br>Clutathiana S. transforaça Mu 2         | VES      |
| 27420            | 52                   | GSTM5<br>Carrel | Or     | Giutatnione S-transferase Mu 3                       | YES      |
| 30628            | 50<br>49             |                 | C      | F-actin binding protein, beta subunit                | YES      |
| 49202            | 48                   | ACIL/A          |        | Actin-like protein /A                                | NU       |
| 36938            | 48                   | Cloris6         | OF     | Cromossome 1 open reading frame 56                   | YES      |
| 41728            | 43                   | ACIRI2          | C      | Actin related protein 12                             | NO       |
| 28350            | 39                   | SSC.25138       | OF     | Uncharacterized                                      | NO       |
| 63925            | 36                   | FAM/IA          | OF     | Protein FAM/IA                                       | YES      |
| 89288            | 35                   | VCP             | OF     | ATPase                                               | YES      |
| 26688            | 35                   | RPS3            | R      | Protein-S3 40S ribosomal                             | YES      |
| 89681            | 35                   | DPY19L2         | OF     | C-mannosiltransferase                                | YES      |
| 89289            | 34                   | VCP             | OF     | Transition endoplasmatic reticulum                   | YES      |
|                  |                      |                 |        | ATPase                                               |          |
| 50141            | 32                   | EEF1A           | OF     | Elongation factor 1-alpha                            | YES      |
| 23312            | 31                   | C7orf61         | OF     | Cromossome 7 open reading frame 61                   | YES      |
| 149547           | 30                   | SPATA31D1       | OF     | Spermatogenesis-associated protein                   | NO       |
| 26668            | 30                   | TPI1            | OF     | Triosenhosnhate isomerase                            | VES      |
| 39359            | 29                   | GAPDHS          | OF     | Glyceraldehyde-3-nhosnhate                           | YES      |
| 57557            | 2)                   | O/II DIIS       | 01     | dehydrogenase, testis-specific                       | 1 2.5    |
| 40509            | 28                   | CYLC2           | С      | Cilicin 2                                            | YES      |
| 29801            | 27                   | LUZP2           | OF     | Leucine zipper protein 2                             | NO       |
| 44260            | 26                   | HOXB3           | OF     | Homeobox protein Hox-B3                              | YES      |
| 198824           | 26                   | C2orf16         | OF     | Cromossome 2 open reading frame 16                   | YES      |
| 56664            | 26                   | LOC100620428    | UC     | Uncharacterized                                      | NO       |
| 13988            | 25                   | HIST2H2AC       | Н      | Histone H2A                                          | YES      |
| 34878            | 24                   | CAPZA3          | С      | F-actin binding protein, alpha-3 subunit             | YES      |
| 49960            | 24                   | LOC100510930    | UC     | Uncharacterized                                      | NO       |
| 14135            | 22                   | HIST1H2AE       | Н      | Histone H2A                                          | YES      |
| 30596            | 21                   | LOC100511361    | UC     | Uncharacterized                                      | NO       |
| 45511            | 20                   | ACTL7B          | С      | Actin-like protein 7B                                | NO       |
| 41107            | 20                   | ACTRT3          | С      | Actin related protein T3                             | YES      |
| 35515            | 20                   | PPP1CB          | OF     | Serine/threonine-protein phosphatase -               | YES      |
| 17462            | 10                   | TMEM80          | OF     | Deta catalytic subuint<br>Drotein TMEM80             | VES      |
| 28726            | 19                   | TEAM            | OF     | Transprintion factor $\Lambda$ mitochondrial         | VES      |
| 20720            | 19                   |                 | HS     | Heat shock 70 kDa type 1                             | VES      |
| /0344            | 10                   |                 | C IIS  | Tubulin AP                                           | VES      |
| 31998            | 18                   | FHL1C           | OF     | Four and a half LIM domains 1 protein,               | YES      |
| <b>22</b> ( 2 )  |                      |                 | 0.5    | isoform C                                            |          |
| 32404            | 15                   | ASKGLI          | OF     | Isoaspartyl peptidase/L-asparaginase                 | NO       |
| 10960            | 15                   | HSPEI           | HS     | Heat Shock protein 10 KDa                            | YES      |
| 11829            | 15                   | TXN             | OF     | Thioredoxin                                          | NO       |
| 16987            | 14                   | HSPB9           | HS     | Heat shock protein beta-9                            | YES      |
| 67705            | 14                   | FUBP1           | OF     | Far upstream element-binding protein 1               | YES      |
| 42644            | 14                   | PRR30           | OF     | Proline-rich protein 30                              | NO       |
| 10350            | 14                   | DYNLL2          | OF     | Dynein light chain 2, cytoplasmic                    | YES      |
| 11367            | 13                   | HIST1H4A        | Н      | Histone H4                                           | YES      |
| 53000            | 13                   | VRK3            | OF     | Inactive serine/threonine-protein kinase             | YES      |
| 45693            | 13                   | ACTL9           | С      | ACTL9                                                | YES      |
| 20169            | 13                   | RANGRF          | OF     | Ran guanine nucleotide release factor                | YES      |
| 22187            | 13                   | GPX4            | OF     | Phospholipid hydroperoxide Glutathione peroxidase    | YES      |

| <b>Up</b> Mandanas <i>et al</i> . Directains from suring snorm abromatin | Mendonça <i>et al.</i> Proteins from swine sperm chromatin. |
|--------------------------------------------------------------------------|-------------------------------------------------------------|
|--------------------------------------------------------------------------|-------------------------------------------------------------|

|                                                                                                      | resence  |
|------------------------------------------------------------------------------------------------------|----------|
| 44835     12     SERBP1     OF     Plasminogen activator inhibitor 1 RNA-     YI                     | ES       |
| binding protein                                                                                      | TO       |
| 14803 11 KPL25 K 005 H00solial plotein L25 11<br>15992 11 EEE1D OE Elementian factor 1 dolta VI      | ES<br>TS |
| 15882 II EEFID OF Elongation factor I-delta II                                                       | ES<br>TS |
| 2215/ 11 LOC595122 H Historie H1.5-like protein YI   44805 11 DCK2 OE 2 phoenbagly corpts lipping VI | ES<br>TS |
| 44695 11 PGK2 OF 2-phosphoglycerate kinase 11                                                        | ES<br>TS |
| 20604 11 VDAC1D5 UC Uncharacterized                                                                  | E5       |
| 70670 11 DADRC1 OF Delvedenvlete hinding protein 1 VI                                                | TES IN   |
| 20252 11 PDI 1 P 60S ribosomal protoin I 11                                                          | ES       |
| 20232 11 KFL11 K 005 filosofilai proteini L11 11   42020 10 GLUI OF Glutemine sunthetese VI          | ES       |
| 19441 10 C17H20orf106 OF Orthologue of H saniens chromosome VI                                       | ES<br>ES |
| 20 open reading frame 106                                                                            | 25       |
| 10045 10 LOC100522848 UC Uncharacterized NO                                                          | 0        |
| 45773 10 FAM71D OF Protein FAM71D YI                                                                 | ES       |
| 11693 10 RPLP2 R 60S ribosomal protein 2 YF                                                          | ES       |
| 6825 9 LOC100522509 UC Uncharacterized NO                                                            | 0        |
| 284219RPS6R60s ribosomal protein 6YI                                                                 | ES       |
| 213889RPL17R60S ribosomal protein L17YI                                                              | ES       |
| 15129 9 H2AFX H Histone H2A YI                                                                       | ES       |
| 68379 9 NT5C1B OF Cytosolic 5'-nucleotidase 1B YI                                                    | ΈS       |
| 375029PCBP1OFPoly(rC)-binding protein 1YI                                                            | ES       |
| 37512 9 LOC733611 OF Serine/threonine-protein phosphatase NO                                         | 0        |
| 43833 8 SPAG4L OF Sperm associated antigen 4-like protein NG                                         | 0        |
| 27205 8 LOC100738983 UC Uncharacterized NO                                                           | 0        |
| 14122 8 LOC100519930 UC Uncharacterized NO                                                           | 0        |
| 32694 8 YBX3 OF Y-box-binding protein 3 YH                                                           | ES       |
| 12784 8 RPL30 R 60s ribosomal protein 30 YI                                                          | ΈS       |
| 33692 8 HNRNPC R Heterogeneous nuclear ribonucleoprotein YH C                                        | ΈS       |
| 24306 8 RPL13 R 60s ribosomal protein 13 YI                                                          | ES       |
| 13890 8 HIST1H2BN H Histone H2B YI                                                                   | ES       |
| 15816 7 RPS23 R 40S ribosomal protein S23 YI                                                         | ES       |
| 17266 7 PRDX5 OF Peroxideroxin 5 NO                                                                  | 0        |
| 17695 7 RPL23A R 60s ribosomal protein 23A YI                                                        | ES       |
| 35460 7 SPEM1 OF Spermatid maturation protein 1 YI                                                   | ΈS       |
| 220718 7 ARHGEF17 OF Protein Arhgef17 NO                                                             | 0        |
| 40353 7 SUV39H1 H Histone-lysine N-methyltransferase YI SUV39H1                                      | ES       |
| 14728 6 UBA52 R Ubiquitin-60s ribosomal protein L40 YI                                               | ES       |
| 16730 6 AWN OF Carbohydrate-binding protein AWN NO                                                   | 0        |
| 20688 6 PDAP1 OF 28 kDa heat- and acid-stable YI                                                     | ES       |
| phosphoprotein                                                                                       |          |
| 132137 6 NRD1 OF Protein NRD1 YI                                                                     | ES       |
| 34484 6 C9orf24 OF Cromossome 9 open reading frame 24 YI                                             | ES       |
| 272275 6 FN1 OF Protein FN1 NO                                                                       | 0        |
| 29945 6 RPS3A R 40S ribosomal protein S3a YI                                                         | ES       |
| 16832 6 LOC100517970 UC Uncharacterized NO                                                           | 0        |
| 53469 6 GC OF Vitamin D-binding protein NO                                                           | 0        |
| 69823 6 HSPA2 HS Heat shock-related 70 kDa protein 2 YI                                              | ES       |
| 57993 6 KRT10 C Keratin 10 YI                                                                        | ΈS       |
| 15860 6 RPL32 R 60S ribosomal protein L32 YI                                                         | ES       |
| 40941 6 TSSK2 OF Testis-specific serine/threonine-protein YI kinase 2                                | ES       |
| 87445 6 PHTF1 OF Putative homeodomain transcription YI                                               | TES      |
| 269468 6 TLN1 OF Talin-1 N(                                                                          | 0        |
| 11528 6 LOC100523874 UC Uncharacterized No                                                           | Õ        |

| (D) | Mendonça <i>et al</i> . Proteins from swine sperm chromatin. |
|-----|--------------------------------------------------------------|
|     |                                                              |

| MM (Da) | Nº Peps | Gene name    | Family  | Description                                                       | Nuclear<br>presence |
|---------|---------|--------------|---------|-------------------------------------------------------------------|---------------------|
| 20853   | 6       | ТМРО         | С       | Lamina-associated polypeptide 2,                                  | YES                 |
| 14122   | 6       | LOC100152125 | и       | lisoform alpha                                                    | VES                 |
| 14123   | 6       | DDD1CC       | П<br>ОF | nisione nzo<br>Serina/thraonina protain phosphatasa               | I ES<br>VES         |
| 50852   | 0       | rrrice       | Or      | gamma catalytic subunit                                           | 1 25                |
| 7379    | 6       | ATOX1        | OF      | Copper transport protein ATOX1                                    | NO                  |
| 39623   | 5       | ZPBP         | OF      | Zona pellucida-binding protein                                    | YES                 |
| 73702   | 5       | PLCZ         | OF      | l-phosphatidylinositol 4,5-bisphosphate<br>phosphodiesterase zeta | YES                 |
| 39591   | 5       | CXorf66      | OF      | Cromossome X open reading frame 66                                | YES                 |
| 61477   | 5       | BAG3         | OF      | BAG family molecular chaperone regulator 3                        | YES                 |
| 28658   | 5       | LOC100155139 | PS      | Proteasome subunit beta type OS                                   | YES                 |
| 77524   | 5       | KHSRP        | OF      | Far upstream element-binding protein 2                            | YES                 |
| 32388   | 5       | WBP2NL       | OF      | Protein WBP2NL                                                    | NO                  |
| 28433   | 5       | LOC100154408 | PS      | Proteasome subunit alpha type                                     | YES                 |
| 199915  | 5       | MAP2         | С       | Microtubule-associated protein                                    | YES                 |
| 54427   | 5       | KRT8         | С       | Keratin 8                                                         | YES                 |
| 19256   | 5       | RPL18        | R       | 60S ribosomal protein L18                                         | YES                 |
| 37231   | 5       | PCBP2        | OF      | Poly(rC)-binding protein 2                                        | YES                 |
| 20810   | 5       | RPL12        | R       | 60S ribosomal protein L12                                         | YES                 |
| 15300   | 4       | TNP2         | OF      | Nuclear transition protein 2                                      | YES                 |
| 80207   | 4       | ACSL6        | OF      | Long-chain-fatty-acidCoA ligase 6                                 | YES                 |
| 35692   | 4       | NUDT18       | OF      | 8-oxo-dGDP phosphatase NUDT18                                     | YES                 |
| 62282   | 4       | COIL         | OF      | Coilin                                                            | YES                 |
| 41868   | 4       | ACTRT1       | C       | Actin-related protein T1                                          | NO                  |
| 28268   | 4       | HIFNT        | Н       | Histone H1 testis-specific                                        | YES                 |
| 36023   | 4       | YBX1         | OF      | Protein Y-BOX 1                                                   | YES                 |
| 345426  | 4       | DCHS1        | OF      | Protocadherin-16                                                  | NO                  |
| 23384   | 4       | NACA         | OF      | Nascent polypeptide-associated complex subunit alpha              | YES                 |
| 30101   | 4       | RPL7A        | С       | 60S ribosomal protein L7a                                         | YES                 |
| 35453   | 4       | ANTXRL       | OF      | Anthrax toxin receptor-like                                       | NO                  |
| 18922   | 4       | CUTA         | OF      | Protein Cuta                                                      | NO                  |
| 4312    | 4       | LOC100525679 | UC      | Uncharacterized                                                   | NO                  |
| 32330   | 4       | TMEM38B      | OF      | Trimeric intracellular cation channel type                        | NO                  |
| 16495   | 4       | UBE2V1       | OF      | Ubiquitin-conjugating enzyme E2 variant                           | YES                 |
| 7660    | 4       | WFDC6        | OF      | WAP four-disulfide core domain protein                            | YES                 |
| 16377   | 4       | CCDC58       | OF      | Coiled-coil domain-containing protein                             | YES                 |
| 29329   | 4       | ERP29        | OF      | Endoplasmic reticulum resident protein<br>29                      | NO                  |
| 76725   | 4       | POLH         | OF      | DNA polymerase eta                                                | YES                 |
| 17791   | 4       | LOC100738931 | UC      | Uncharacterized                                                   | NO                  |
| 22127   | 3       | SPATA3       | OF      | Spermatogenesis-associated protein 31D1                           | NO                  |
| 16588   | 3       | LOC100517228 | UC      | Uncharacterized                                                   | NO                  |
| 14227   | 3       | PDCD5        | OF      | Programmed cell death protein 5                                   | YES                 |
| 13001   | 3       | LOC100736633 | Н       | Histone H2A                                                       | YES                 |
| 30211   | 3       | TSSK6        | OF      | Testis-specific serine kinase 6                                   | YES                 |
| 14719   | 3       | LOC100514544 | UC      | Uncharacterized                                                   | NO                  |
| 25594   | 3       | AK3          | OF      | GTP:AMP phosphotransferase                                        | YES                 |
| 23726   | 3       | SARNP        | R       | SAP domain-containing<br>ribonucleoprotein                        | YES                 |
| 27086   | 3       | C12orf60     | OF      | Cromossome 12 open reading frame 60                               | YES                 |
| 26411   | 3       | PSMA5        | PS      | Proteasome subunit alpha type-5                                   | YES                 |

| (J) | Mendonça <i>et al.</i> Proteins from swine sperm chromatin. |
|-----|-------------------------------------------------------------|
|     |                                                             |

| MM (Da) | Nº Peps | Gene name        | Family  | Description                                   | Nuclear     |
|---------|---------|------------------|---------|-----------------------------------------------|-------------|
| 27200   | 2       | DSMA6            | DC      | Protessome subunit alpha type 6               | VES         |
| 176173  | 3       | EIF4G1           | OF      | Eukaryotic translation initiation factor 4    | NO          |
| 13332   | 3       | RPS20            | R       | 40s ribosomal protein 20                      | YES         |
| 49404   | 3       | KRT18            | к<br>С  | Keratin 18                                    | VES         |
| 14463   | 3       | RPI 31           | R       | 608 ribosomal protein I 31                    | VES         |
| 51677   | 3       | MECP2            | OF      | Methyl-CnG-binding protein 2                  | VES         |
| 81805   | 3       | FTNR             | OF      | Fortilin beta                                 | NO          |
| 7841    | 3       | RPS28            | R       | 40S ribosomal protein S28                     | VES         |
| 14550   | 3       | RI 526<br>RDI 35 | R       | 60s ribosomal protein 35                      | VES         |
| 27200   | 3       | KI L35<br>FTMT   | N<br>OF | Forritin                                      | I LS<br>NO  |
| 27390   | 2       | I OC100522540    |         | Uncharacterized                               | NO          |
| 29620   | 2       | LOC 100323340    | UC<br>U | Uncharacterized<br>History H2 2               | NO          |
| 59722   | 2       | пэгэд<br>рим     | П       | Dimusto lineas                                | I ES<br>VES |
| 30/22   | 2       |                  | DC      | Pyruvate Killase                              | I ES<br>VES |
| 29485   | 2       | PSIVIA4<br>DDS25 | PS<br>D | 40a rihogomol protoin 25                      | I ES<br>VES |
| 13/39   | 2       | KP525<br>CSNR1A1 | K<br>C  | 408 Hoosomai protein 25                       | I ES<br>VES |
| 38915   | 2       | USINKIAI         | U<br>OF | Casein kinase i isotorm alpha                 | YES         |
| 19358   | 2       | LUC100/5/88/     | OF      | Characteristic Characteristic Characteristic  | NU          |
| 33836   | 3       | GAPDH            | OF      | dehydrogenase                                 | YES         |
| 27928   | 3       | PSMA8            | PS      | Proteasome subunit alpha 8                    | YES         |
| 24156   | 3       | PSMA7            | PS      | Proteasome subunit alpha 7                    | YES         |
| 16744   | 3       | PKD2L2           | OF      | Polycystic kidney disease 2-like 2 protein    | NO          |
| 21378   | 3       | IOCF5            | OF      | IO domain-containing protein F5               | NO          |
| 37638   | 3       | GDE1             | OF      | Glycerophosphodiester                         | NO          |
|         | •       |                  |         | phosphodiesterase gde1                        |             |
| 16697   | 3       | PFDN2            | OF      | Prefoldin subunit 2                           | YES         |
| 10231   | 3       | BANF2            | OF      | Barrier-to-autointegration factor-like        | YES         |
| 87428   | 3       | ODF2             | С       | protein<br>Outer dense fiber 2                | NO          |
| 49257   | 2       | HNRNPK           | R       | Heterogeneous nuclear ribonucleoprotein       | YES         |
| 12000   | -       |                  | 0       | K k                                           | NO          |
| 42009   | 2       | ACTA2            | C       | Actin alpha 2                                 | NU          |
| 14/59   | 2       | KPL22            | K       | 608 ribosomal protein 22                      | YES         |
| 151110  | 2       | ACINI            | OF      | Acinus                                        | YES         |
| 32190   | 2       | KPL6             | K       | 608 ribosomal protein 6                       | YES         |
| 48197   | 2       | LOC100/39434     | UC      | Uncharacterized                               | NO          |
| 135902  | 2       | AHNAK            | OF      | neuroblast differentiation-associated protein | NO          |
| 17232   | 2       | CENPV            | OF      | Centromeric protein V                         | YES         |
| 12441   | 2       | RPL36A           | R       | 60S ribosomal protein L36A                    | YES         |
| 26047   | 2       | RPL18A           | R       | 60S ribosomal protein L18A                    | YES         |
| 89391   | 2       | PPP1R9B          | OF      | Neurabin 2                                    | YES         |
| 35431   | 2       | DECR1            | OF      | 2,4-dienoyl-CoA reductase                     | YES         |
| 15097   | 2       | RPS19            | R       | 40S ribosomal protein S19                     | YES         |
| 12423   | 2       | LOC100519900     | UC      | Uncharacterized                               | NO          |
| 32953   | 2       | PSMG1            | PS      | Proteasome subunit G1                         | YES         |
| 57160   | 2       | C17orf74         | OF      | Cromossome 17 open reading frame 74           | YES         |
| 5970    | 2       | MT2A             | OF      | Metallothionein-2A                            | YES         |
| 19660   | 2       | LOC100522904     | UC      | Uncharacterized                               | NO          |
| 31591   | 2       | LDHC             | OF      | L-lactate dehydrogenase C                     | YES         |
| 24423   | 2       | RAN              | OF      | GTP-binding nuclear protein                   | YES         |
| 33347   | 2       | RBMX             | OF      | RNA-binding motif protein, X                  | YES         |
| 84967   | 2       | SF3A1            | OF      | Splicing factor 3A subunit 1                  | YES         |
| 20972   | 2       | PEBP1            | OF      | Phosphatidylethanolamine-binding              | YES         |
| 50020   | 1       | KRT28            | С       | Keratin 28                                    | YES         |

Mendonça *et al.* Proteins from swine sperm chromatin.

| MM (Da) | Nº Peps | Gene name    | Family | Description                                                                                              | Nuclear  |
|---------|---------|--------------|--------|----------------------------------------------------------------------------------------------------------|----------|
|         |         |              |        |                                                                                                          | presence |
| 49417   | 1       | KRT15        | С      | Keratin 15                                                                                               | YES      |
| 65109   | 1       | KRT75        | С      | Keratin 75                                                                                               | YES      |
| 57113   | 1       | KRT4         | С      | Keratin 4                                                                                                | YES      |
| 40202   | 1       | PGK1         | OF     | Phosphoglycerate kinase 1                                                                                | YES      |
| 13377   | 1       | H2AFV        | Н      | Histone fragment H2A                                                                                     | YES      |
| 48977   | 1       | DLST         | OF     | Dihydrolipoyllysine-residue<br>succinyltransferase component of 2-<br>oxoglutarate dehydrogenase complex | YES      |
| 8550    | 1       | СНТОР        | OF     | Chromatin target of PRMT1 protein                                                                        | YES      |
| 94733   | 1       | MATR3        | OF     | Matrin 3                                                                                                 | YES      |
| 36135   | 1       | ELAVL1       | OF     | ELAV type 1                                                                                              | YES      |
| 27206   | 1       | LOC100519489 | UC     | Uncharacterized                                                                                          | NO       |
| 81382   | 1       | CC2D1B       | OF     | Coiled-coil and C2 domain-containing protein 1B                                                          | YES      |
| 24416   | 1       | LOC100525255 | UC     | Uncharacterized                                                                                          | NO       |
| 153433  | 1       | BRD4         | OF     | Protein BRD4                                                                                             | NO       |
| 22022   | 1       | LOC100152612 | OF     | Peptidyl-proline cis-trans isomerase                                                                     | YES      |
| 29598   | 1       | RPS4         | R      | 40S ribosomal protein 4                                                                                  | YES      |
| 48074   | 1       | pdi-p5       | OF     | Protein disulfide isomerase P5                                                                           | NO       |
| 28677   | 1       | PGAM2        | OF     | Phosphoglycerate mutase 2                                                                                | YES      |

#### Discussion

The results of toluidine blue analyses suggest that the animals in question presented normal sperm with respect to chromatin compaction (Beletti *et al.*, 2005).

According to DeMateo *et al.* (2011) the proteomic analyses of human sperm nuclei revealed that the most abundant proteins were the histone family (9.7%), followed by cytoskeletal proteins (cytokeratins, tubulin and tektinas, 8.6%), ribosomal proteins (6.7%), proteasome subunits (6.2%), uncharacterized proteins (6.2%), spanx proteins (1.7%), and heat shock proteins (1.2%). Notably DeMateo *et al.* (2011) studied the proteins of human sperm nuclei, whereas this study focused on the proteins of the swine sperm nuclear matrix. Similarities between the identified families can be observed, although there is little similarity between the described proportions.

Notably LOC100626209 protein had the highest number of peptides (218) in this study, followed by FAM71B (140 peptides). The third most detected (105 peptides) was protamine 2. The LOC100626209 protein was classified in this study as an uncharacterized protein and had not previously been described in any species, and thus we cannot speculate as to its possible actions. Lemos (2013) described uncharacterized proteins with high molecular weights in the bovine nuclear annulus, which may indicate that the LOC100626209 protein is present in this structure. The second protein FAM71B was identified in the human sperm nucleus and might be involved in RNA biogenesis (Van Koningsbruggen et al., 2007). This protein was identified for the first time in swine sperm nuclear matrix.

Interestingly, the third protein in terms of the number of peptides found was protamine 2. Protamine 2 was described as being absent in the swine sperm nucleus, whereas protamine 1 was identified in various mammalian species, including swine (Pirhonen *et al.*, 1994; Andrabi, 2007). Although some studies did not identify protamine 2, this protein was reported to be transcribed and translated in swine at low levels. However, an 8 amino acid deletion occurred at the amino acid terminus of the molecule and probably had functional relevance (Maier *et al.*, 1990).

The absence of protamine 1 in the sample of swine sperm chromatin also occurred in the evaluation of the human sperm nucleus (DeMateo et al., 2011). The same authors reported that protamine 2 was present among the basic nuclear proteins, as was demonstrated in this study. These authors also suggested a possible explanation for the lack of protamine 1 based on its particular amino acid composition. Protamine is a basic protein that is highly enriched in lysine and arginine (more than 50% in the mature form). Trypsin cleaves peptide chains primarily on the carboxyl side of lysine or arginine, which results in very small peptide fragments that cannot be detected under the conditions used in mass spectrometry. This limitation is particularly important for protamine 1 because it is more enriched in arginine than protamine 2.

Genes for two protamines (PRM1 and PRM2) and two transition proteins (TNP1 and TNP2) have been characterized in several mammalian species (Engel *et al.*, 1992). According to the same authors, the human, swine and bull genes for PRM1, PRM2 and TNP2 are closely connected along a specific stretch of DNA, whereas the gene for TNP1 in all of the species studied is located on another chromosome. In this study we detected just genes for PRM2 and TNP2, but we also detected a peptide of the CHTOP protein, which is responsible for the chromatin marking of protamine 1. This protein is also involved in transcriptional regulation. It contains a region rich in glycine and arginine that interacts with the RNA or DNA directly or

in combination with other nucleotide binding proteins (Takai et al., 2014).

Proteins related to the ribonucleosome were identified in the sample. The 40S ribosomal proteins RPS25, RPS3A and RPS6 were also reported in the human sperm nuclear proteome by DeMateo *et al.* (2011). Some 60S ribosomal proteins were also found in the human sperm nucleus, as in this study. The presence of RPL9 protein in human sperm nuclei was confirmed using an immunofluorescence technique (DeMateo *et al.*, 2011).

The proteomic analysis of isolated sperm nuclei indicated the presence of only the cytoplasmic ribosomal proteins (80S (60S + 40S)) and not the mitochondrial ribosomal proteins (55S). Thus, the detection of cytoplasmic ribosomal proteins in this study was consistent with the cytoplasmic translation proposed by some authors (Lambard *et al.*, 2004; Galeraud-Denis *et al.*, 2007; DeMateo *et al.*, 2011The ribosomal proteins are recognized as cytoplasmic proteins. Thus, their detection in swine sperm nuclei is an important finding and may clarify possible paternal epigenetic actions in swine.

The family of cytoskeletal proteins (i.e., keratin, tubulin and actin) that was identified in this study has also been identified in the human sperm nucleus (DeMateo *et al.*, 2011). The same authors reported that some cytoskeletal molecules were demonstrated to participate in the formation of the sperm tail and sperm nucleus format. Specifically, tubulin was also detected in the heads of sperm, suggesting a possible role related to the acrosome reaction. Cytokeratin and actin were also associated with the sperm nuclear matrix in guinea pigs (Ocampo *et al.*, 2005), and now in swine sperm nuclear matrix.

This study identified several histone variants in mature and ejaculated sperm. In this respect, we demonstrated the transport and incorporation of the sperm histones to the zygote, indicating another potential effect of parental epigenetic reprogramming on the zygote after fertilization that is independent of the imprinting state (Miller *et al.*, 2010). Histones were only a small part of the proteins identified in this sperm chromatin sample, indicating that many other proteins can transmit epigenetic information to the zygote.

Epigenetic control of gene expression exists for the activation of DNA methylation because methylation, acetylation and phosphorylation of histones and histone entry into the oocyte leaves a space for DNA and epigenetic signaling based on histones, which can be important for subsequent embryonic development (Miller *et al.*, 2010). The same authors described results from analyses of the composition of soluble (linked to histones) and insoluble (linked to protamines) domains in human and murine sperm and indicated that chromatin was actually the most significant contributor to an epigenetic signal in these cells.

Concurrent with visible changes in the organization of the sperm chromatin, the histones would be removed from the DNA of initial spermatids and spermatocytes and replaced by transition proteins. Subsequently, the transition proteins are replaced by

protamines that are responsible for the final condensation and stabilization of the sperm chromatin (D'Occhio *et al.*, 2007). The same authors reported that histones could persist in ejaculated mature sperm from humans and other mammals, as demonstrated in this study for several types of histones.

The fact that sperm nucleus histones are not necessarily characterized as an error in chromatin compaction has led to a concept change. Beletti (2013) reported that there are regions interspersed between the toroidal structures of sperm chromatin that contain nucleosome sequences, which often contain hypomethylated DNA. These regions may be involved in important functions related to early embryonic development and paternal epigenetic inheritance.

A total of 25 different proteasome subunits were reported in the human sperm nucleus (DeMateo *et al.*, 2011); PSMA4, 5, 6 and 8 were also identified in this study. These proteins are the protein machine for ubiquitin-mediated proteolytic degradation, which has been implicated in many cellular processes including cell cycle progression, transcriptional regulation, signal transduction, and determining the fate of the cell (Zhong and Belote, 2007).

Is interesting to note the identification of proteins involved in the regulation of gene expression, such as PHTF1 protein (Table 1). It was thought that the sperm is an inert transcriptionally cell, with the sole objective is to provide its DNA (packed by protamines) to the oocyte (DeMateo *et al.*, 2011). Thus, the sperm nuclear proteins identified here may be only a remnant of the sperm cell differentiation process, or may be relevant to fertilization or success of embryo development.

For example, the PPP1CC protein, that according to MacLeod *et al.* (2014) is an essential phosphatase protein in spermatogenesis, was found in the sample, which concurs with a previous result (DeMateo *et al.*, 2011). An important nuclear protein (WBP2NL) found in this study, was also identified in rats by Chen *et al.* (2014) and may play a role in meiotic resumption and male pronucleus formation, which are related to early embryonic development. The protein glyceraldehyde 3-phosphate dehydrogenase (GAPDH) found in this sample performed functions in glycolysis and participated in nuclear events, including transcription, RNA transport, DNA replication and apoptosis (Applequist *et al.*, 1995).

The heterogeneous nuclear ribonucleoprotein (HNRNPs) is involved in many biological processes, such as cell signaling, DNA repair, and regulation of gene expression and protein (Almeida *et al.*, 2014). The HNRNPC presented 8 peptides in the sample and was previously described in the human sperm nucleus (DeMateo *et al.*, 2011). The heterogeneous nuclear ribonucleoprotein K (HNRNPK) was also found in this sample, and according to Almeida *et al.* (2014) this protein is predominantly located in the nucleus, where it is involved in multiple steps in gene expression such as transcription, RNA splicing and translation.

Proteins of the nuclear matrix may be involved in different genetic markers that can contribute after fertilization to establish the order of paternal gene

# Mendonça *et al.* Proteins from swine sperm chromatin.

reactivation (Oliva, 2006) and may serve as an indication of protein epigenetic function. Therefore, based on the results obtained in this study and the functions of some described proteins, the nuclear matrix, which is composed in part of chromatin proteins, transmits essential mechanisms for the growth and differentiation of the oocyte. Thus, the proteins become not only structural components of the chromatin/matrix architecture but also essential components of successful reproduction.

In this survey, 9.9% of the proteins were classified as uncharacterized (i.e., there are no reports in the literature regarding the description, identification and isolation of these proteins for any species). Thus, future studies can be designed in an attempt to characterize these proteins and elucidate their functions to clarify possible epigenetic paternal inheritance that is beyond the current scientific knowledge.

The set of proteins present in swine sperm chromatin shows that the nuclear matrix plays important roles in the development and maturation of sperm cells. Therefore, it would be important to determine how these protein structures are linked to the establishment of epigenetic functions and how they can affect the embryo development.

In conclusion the protein isolation from the swine sperm nuclear matrix was satisfactory and demonstrated that the protocol was efficient. Some protein families were identified and described. However, it was not possible to identify some protein structures, such as protamine 1.

Therefore, this study contributes to a catalog of protein structures that may be useful in future proteomics studies. The comparison between fertile and sub-fertile animals can contribute to the search for proteomic variations. These studies can improve reproductive technologies and animal breeding of several species by focusing breeders' choices on epigenetic potential as well as high genetic potential.

## Acknowledgments

The authors acknowledge CNPq and FAPEMIG for financial support. We also thank the Federal University of Uberlandia, particularly the post-graduate program in veterinary science.

#### References

Almeida LO, Garcia CB, Matos-Silva FA, Curti C, Leopoldino AM. 2014. Accumulated SET protein upregulates and interacts with hnRNPK, increasing its binding to nucleic acids, the Bcl-xS repression, and cellular proliferation. *Biochem Biophys Res Commun*, 445:196-202.

Andrabi SMH. 2007. Mammalian sperm chromatin structure and assessment of DNA fragmentation. *J Assist Reprod Genet*, 24:561-569.

Applequist SE, Keyna U, Calvin MR, Beck-Engeser GB, Raman C, Jäck HM. 1995. Sequence of the rabbit glyceraldehyde-3-phosphate dehydrogenaseencoding Cdna. *Gene*, 163:325-326.

**Beletti ME, Costa LF, Guardieiro MM**. 2005. Morphometric features and chromatin condensation abnormalities evaluated by toluidine blue staining in bull spermatozoa. *Braz J Morphol Sci*, 22:85-90.

Beletti ME. 2013. Cromatina espermática: quebrando paradigmas. *Rev Bras Reprod Anim*, 37:92-96.

**Bradford MM**. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. *Analyt Biochem*, 72:248-254.

Chen M, Wang H, Li X, Li N, Xu G, Meng Q. 2014. PLIN1 deficiency affects testicular gene expression at the meiotic stage in the first wave of spermatogenesis. *Gene*, 543:212-219.

**Codrington AM, Hales BF, Robaire B**. 2007. Exposure of male rats to cyclophosphamide alters the chromatin structure and basic proteome in spermatozoa. *Hum Reprod*, 22:1431-1442.

**DeMateo S, Castillo J, Estanyol JM, Ballescá JL, Oliva R**. 2011. Proteomic characterization of the human sperm nucleus. *Proteomics*, 11:2714-2726.

**D'Occhio MJ, Hengstberger KJ, Johnston SD**. 2007. Biology of sperm chromatin structure and relationship to male fertility and embryonic survival. *Anim Reprod Sci*, 101:1-17.

**Engel W, Keime S, Kremling H, Hameister H, Schluter G**. 1992. The genes for protamine 1 and 2 (PRM1 and PRM2) and transition protein 2 (TNP2) are closely linked in the mammalian genome. *Cytogenet Cell Genet*, 61:158-169.

**Galeraud-Denis I, Lambard S, Carreau S**. Relationship between chromatin organization, mRNAs profile and human male gamete quality. *Asian J Androl*, 9:587-592.

Lambard S, Galeraud-Denis I, Martin G, Levy R. 2004. Analysis and significance of mRNA in human ejaculated sperm from normozoospermic donors: relationship to sperm motility and capacitation. *Mol Hum Reprod*, 10:535-541.

**Lemos MS**. 2013. Caracterização morfológica e bioquímica do ânulo nuclear de espermatozoide bovino. Uberlandia, Brazil: Federal University of Uberlândia. Thesis.

**MacLeod G, Taylor P, Mastropaolo L, Varmuza S**. 2014. Comparative phosphoproteomic analysis of the mouse testis reveals changes in phosphopeptide abundance in response to Ppp1cc deletion. *EuPA Open Proteomics*, 2:1-16.

Maier WM, Nussbaum G, Domenjoud L, Klemm U, Engel W. 1990. The lack of protamine 2 (P2) in boar and bull spermatozoa is due to mutations within the P2 gene. *Nucleic Acids Res*, 18:1249-1254.

Miller D, Brinkworth M, Iles D. 2010. Paternal DNA packaging in spermatozoa: more than the sum of its parts? DNA, histones, protamines and epigenetics. *Reproduction*, 139:287-301.

**Morandi-Filho R.** 2013. Análise da estrutura e identificação de proteínas da cromatina nuclear espermática de bovinos. Uberlandia, Brazil: Federal University of Uberlandia. Thesis.

Ocampo J, Mondragon R, Roa-Espitia AL, Chiquete-Felix N, Salgado ZO, Mújica A. 2005.



Actin, myosin, cytokeratins and spectrin are components of the guinea pig sperm nuclear matrix. *Tissue Cell*, 37:293-308.

**Oliva R**. 2006. Protamines and male infertility. *Hum Reprod Update*, 12:417-435.

Oliva R, Ballescá JL. 2012. Proteomics of the spermatozoon. *Balcan J Med Genet*, 15:27-30.

**Pirhonen A, Linnala-Kankkunen A, Maenpaa PH**. 1994. Identification of phosphoseryl residues in protamines from mature mammalian spermatozoa. *Biol Reprod*, 50:981-986.

**Rauch A**. 2006. Computational Proteomics Analysis System (CPAS): an extensible, open-source analytic system for evaluating and publishing proteomic data and high throughput biological experiments. *J Proteome Res*, 5:112-121.

**Takai H, Masuda K, Shirahige K, Akiyama T**. 2014. 5-Hydroxymethylcytosine plays a critical role in glioblastomagenesis by recruiting the CHTOPMethylosome complex. *Cell Rep*, 9:48-60. Uniprot.org [homepage on the internet]. 2015. Proteins data bank, Inc. Avaiable on: http://www.uniprot.org/. Accessed on: Jun 1st 2015.

Van Koningsbruggen S, Straasheijm KR, Sterrenburg E, Graaf N, Dauwerse HG, Frants RR, Van der Maarel SM. 2007. FRG1P-mediated aggregation of proteins involved in pre-mRNA processing. *Chromosoma*, 116:53-64.

Wright PC, Noirel J, Ow SY, Fazeli A. 2012. A review of current proteomics technologies with a survey on their widespread use in reproductive biology investigations. *Theriogenology*, 77:738-765.

Yamauchi Y, Shaman JA, Ward WS. 2011. Nongenetic contributions of the sperm nucleus to embryonic development. *Asian J Androl*, 13:31-35.

**Zhong L, Belote JM**. 2007. The testis-specific proteasome subunit Pros\_6T of *D. melanogaster* is required for individualization and nuclearmaturation during spermatogenesis. *Development*, 134:3517-3525.