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Abstract 
 

Much of what we know about the involvement 
of the immune system in periovulatory follicle 
differentiation, ovulation and subsequent formation of 
the corpus luteum in cattle is drawn from the findings of 
studies in several mammalian livestock species. By 
integrating published histological data from cattle, 
sheep and pigs and referring back to the more 
comprehensive knowledge bank that exists for mouse 
and humans we can sketch out the key cells of the 
immune system and the cytokines and growth factors 
that they produce that are involved in follicle 
differentiation and luteinization, ovulation and early 
follicle development. These contributions are reviewed 
and the key findings, discussed.  
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Introduction 
 

Optimum fertility underlies all livestock 
production systems and by it’s nature reflects the 
metabolic and immunological health status of the 
animal. Exposure to environmental insults such as heat 
stress, undernutrition and drought, metabolic and 
pathogenic disease have well-documented negative 
consequences for female fertility (Fair, 2010). In dairy 
cattle the period from 3 weeks pre-calving to 3 weeks 
post-calving, known as the transition period, has been 
the subject of much focus and there is substantial 
scientific evidence that it exerts a profound effect on the 
animal’s metabolic, immune and endocrine systems. 
Transition dairy cows become immunosuppressed due 
to lower dry matter intake, increased exposure to 
bacteria, and increased non-esterified fatty acid, beta-
hydroxybutarate, concentrations and therefore more 
susceptible to increased incidence of endometritis and 
metritis, generally associated with reduced productivity 
and poor fertility in the rebreeding period (Sheldon et 
al., 2009; Thatcher et al., 2010; Giuliodori et al., 2013). 
Oocyte quality is considered a major contributor to the 
low fertility of these animals (Fair, 2010; Leroy et al., 
2015), but so too is corpus luteum (CL) function 
(Niswender et al., 1994) and the endometrial 
environment. If we consider the ontogeny of the CL and 
it’s primary function when formed, it is obvious that 
these key contributory factors are intricately related. 
Moreover, numerous studies have outlined an integral 
role for immune cells in follicular development 
(Fukumatsu et al., 1992), steroidogenesis (Petrovská et 

al., 1996), ovulation (Brännström and Enskog, 2002) 
and CL formation and regression (Pate et al., 2010). 
Thus it is likely that as the immune and endocrine 
systems coordinate the normal development and 
functioning of these tissues (Hansen et al., 2010), their 
susceptibility to modulation by adverse metabolic and 
environmental environments will act as the primary 
conduit by which oocyte quality and CL function will 
be compromised. Taking this statement as our 
hypothesis, the aim of this manuscript is to review the 
molecular and cellular involvement of the cow’s 
immune system in follicle differentiation, ovulation and 
corpus luteum formation. 
 

Follicle differentiation and luteinization 
 

Differentiation of the dominant follicle is 
associated with granulosa cell proliferation, increased 
intrafollicular concentration of estradiol (E2) and a 
switch from follicle stimulating hormone (FSH) to 
luteinizing hormone (LH)- responsiveness as they 
develop. Following the preovulatory gonadotropin 
surge, these estrogen-active follicles lose their capacity 
to produce E2, for detailed information see the excellent 
review by Ireland et al., (Ireland et al., 2000). The 
subsequent switch from E2 dominance to progesterone 
(P4) dominance in the follicular fluid of preovulatory 
follicles in the period between the LH surge and 
ovulation signals the onset of follicle luteinization 
(Dieleman et al., 1983). Pre-ovulatory follicle 
differentiation and luteinization appear to be 
characterized by an immune-cell specific temporal 
influx of leukocytes likely initiated in response to the 
high E2 concentration and various other chemoattractant 
cues produced by the developing follicle (Townson and 
Liptak, 2003). Histological analysis of dominant 
follicles from cattle, revealed that the first influx of cells 
is constituted by granular leukocytes, primarily mast 
cells, which infiltrate the theca layer of the follicle. 
Based on findings from sheep and pigs, it has been 
proposed that the mast cells in the theca layer become 
activated, likely in response to the LH surge and release 
the contents of their granules. Mast cell granules contain 
many factors, of which it is likely that tumour necrosis 
factor-alpha (TNF-α), recruits additional granular 
leukocytes such as eosinophils and neutrophils 
(Murdoch and Steadman, 1991; Standaert, et al., 1991). 
Following the peak in oestradiol concentration in the 
differentiated dominant follicle, the final phase of 
leukocyte infiltration, an influx of phagocytic 
monocytes occurs more or less in parallel with ovulation 
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(Murdoch and Steadman, 1991; Standaert, et al., 1991). 
At the molecular level, several reports have 

detailed the transcriptomic profile of ovarian follicle 
development in cattle: (Li et al., 2009; Gilbert et al., 
2011; Walsh et al., 2012a; Christenson et al., 2013; 
Hatzirodos et al., 2014). Deep sequencing analysis of 
bovine follicular theca and granulosa tissue during pre-
ovulatory follicle development, have revealed dynamic 
expression of many genes within immune-related 
pathways according to the stage of follicle development. 
Pathways associated with cell proliferation, tissue 
vascularization and angiogenesis were overpopulated 
during follicle differentiation (Walsh et al., 2012a), 
these processes are understood to be carried out by 
macrophages in the theca layer of the differentiating 
follicle (Fraser, 2006; Turner et al., 2011). Following 
the surge in the pituitary gonadotrophin LH, pre-
ovulatory follicle development is directed away from 
differentiation and towards luteinization, initiating the 
earliest stages of CL development (Richards et al., 
2008). In particular, the LH surge sharply increases the 
local production of the 2 angiogenic factors, basic 
fibroblast growth factor (FGF) 2 (Berisha et al., 2006) 
and vascular endothelial growth factor (VEGF) A 
(Schams et al., 2001), as the integrity of the basement 
membrane between the theca and granulosa-cell layers 
breaks down (Dieleman et al., 1983), the movement of 
leukocytes from the theca layer into the granulosa tissue 
is permitted and angiogenesis, required for CL 
formation is initiated.  
 

Ovulation 
 

The biochemical events of mammalian 
ovulation have been likened to an acute inflammatory 
response, owing to the participation of leucocytes, 
classical inflammatory mediators as well as proteolytic 
enzymes (Richards et al., 2008). Based on data from 
studies in mice it is accepted that the initiation of the 
ovulatory process occurs primarily in granulosa cells 
(Richards et al., 2002; 2008). Indeed, the gene 
expression profile of bovine peri-ovulatory granulosa-
cells is enriched with factors involved in acute 
inflammation and immunosurveillance (Walsh et al., 
2012b). The expression of these factors by the granulosa 
cells may activate the ovarian innate immune system 
(Spanel-Borowski, 2011), as evidenced by the detection 
of acute phase proteins, defensins, interleukins and 
prostaglandins (PGs) in the pre-ovulatory follicular 
tissue and fluid (Takeda, 2004; Angelucci et al., 2006; 
Poulsen et al., 2019). Based on findings in rats, it is 
proposed that PGs and leukotrienes stimulate the 
synthesis and activity of collagenases which act to 
promote the degradation of the follicle matrix (Murdoch 
and Gottsch, 2003). While some of these factors may be 
expressed or secreted by the immune cells immigrating 
from the theca layer, it is likely that the damaged 
granulosa cells actively or passively release tissue 
damage signals initiating a pre-ovulatory inflammatory 
cascade. Typically an inflammatory cascade involves 
the activation of endothelial cells and local leucocytes, 
leading to the recruitment and accumulation of 

additional leucocytes, vascular endothelial cells and 
plasma proteins. Within the peri-ovulatory follicle, the 
cytokines TNF-α and interleukin-1 (IL-1) promote 
inflammatory associated processes, such as an increase 
in intrafollicular pressure, the activation of proteolytic 
pathways, collagenases and initiation of angiogenesis 
and tissue destruction and repair. These processes lead 
to the reorganization of the follicular stroma, extensive 
remodelling of the extracellular matrix and loss of the 
follicle’s surface epithelium, which result in a 
weakening in the follicle so that finally the follicle 
ruptures, expelling the cumulus enclosed mature oocyte 
and the follicle is transformed into a wound-like 
structure, the corpus hemorrhagica. 
 
Oocyte maturation 
 
Ovulation is initiated by the LH surge which acts 
directly on the theca and mural granulosa cells of the 
follicle. However, the preovulatory oocyte does not 
express the LH receptor, and expression in the 
surrounding cumulus cells is very low (Lawrence et al., 
1980), therefore the propagation of the LH stimulus 
throughout the follicle to the oocyte is mediated by 
secondary molecules, which initiate oocyte maturation. 
Oocyte maturation comprises expansion and 
proliferation of the cumulus cell layers, oocyte nuclear 
maturation, i.e. dissolution of the nuclear membrane and 
the resumption of meiosis, reorganization of the oocyte 
cytoplasmic organelles and a dramatic increase in 
protein synthesis and activation of molecular pathways 
(Fair, 2003; 2010). The propagators of the LH signal in 
the preovulatory follicle have been identified as three 
members of the epidermal growth factor (EGF)-family, 
the EGF-like peptides amphiregullin (AREG), 
epiregulin (EREG) and beta-cellulin (BTC) (Park et al., 
2004). The ovulatory LH surge induces an acute 
upregulation of the EGF signalling network in mural 
granulosa cells, which is transmitted to the cumulus 
cells. This leads to initiation of mural granulosa cell 
luteinisation, production of an extensive extracellular 
matrix by cumulus cells and the closure of gap 
junctional communication between the oocyte and the 
cumulus cells. At the same time, the meiotic inhibitory 
signalling network mediated by C-type natriuretic 
peptide (CNP) and cyclic guanosine monophosphate 
(cGMP) in mural granulosa and cumulus cells is 
downregulated, leading to oocyte meiotic maturation 
(see Richani and Gilchrist for review) (Richani and 
Gilchrist, 2018). It is noteworthy that the amplification 
and propagation of the EGF signal from the mural to 
cumulus cells is dependent on the LH-induced 
production of PGE2 in mural granulosa cells (Shimada 
et al., 2006). Furthermore, oocytes are not directly 
responsive to EGF-like peptides (Conti et al., 2006; 
Park et al., 2004), therefore, the LH/EGF-peptide 
ovulatory signal is transmitted to the oocyte via the EGF 
receptor on cumulus cells. It has been hypothesized the 
acquisition of EGF signalling capabilities by the mural 
granulosa and cumulus cells is important and likely to 
represent a milestone in oocyte development and 
acquisition of competence (Ritter et al., 2015). 
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Corpus Luteum Formation 
 
The corpus hemorrhagica arises from the 

collapsed post-ovulatory follicle. Morphologically it 
resembles a fresh wound, but it is actually 
heterogeneous in nature, composed of multiple, 
distinctive cell types including steroidogenic cells, large 
and small luteal cells, which originate from the 
granulosa and thecal cells of the follicle ruptured at 
ovulation, as well as resident and migrating vascular 
endothelial cells, fibroblasts and immune cells (Lobel 
and Levy, 1968; Lei, et al., 1991; Spanel-Borowski et 
al., 1997; Penny et al., 1999; Bauer, et al., 2001; Davis 
and Pate, 2007). 
 
Immune system in the developing CL 
 

Immediately after ovulation, in parallel with 
the onset of the differentiation of the follicular 
steroidogenic cells into luteal cells, resolution of the 
inflammation and consequential tissue damage must 
occur. This is initiated by immune cells recruited during 
ovulation (Murdoch and McCormick, 1993; Oakley et 
al., 2010; Watanabe et al., 1997; Gaytán et al., 1998). 
Chemoattractant cytokines (e.g., chemokines IL-8 and 
C-C motif ligand 5 and 2), produced by the endothelial, 
fibroblast and immune -cells, establish concentration 
gradients within the CL, which recruit and direct 
immune cell migration, primarily granulocytes, 
neutrophils and eosinophils that have originated in the 
spleen (Penny et al., 1999; Lobel and Levy, 1968; 
Spanel-Borowski et al., 1997; Jiemtaweeboon et al., 
2011; Shirasuna et al., 2012). Immune cell migration is 
also enabled by the expression of ligands on immune 
cells, which interact with adhesion molecules on 
endothelial cells. Eosinophils are recognized as actors in 
the innate immune response to parasitic infections, 
asthma, and allergic conditions. Therefore, it is 
interesting to note that there is a rapid influx of 
eosinophils into the CL shortly after ovulation in cattle 
(Reibiger and Spanel-Borowski, 2000). The expression 
of P-selectin on endothelial cells appears to recruit 
eosinophils into the developing CL (Aust et al., 2000; 
Rohm et al., 2002). The arrival of these first responders, 
appears to be an important, but not essential, stimulus 
for angiogenesis during the early stages of CL 
development, as dexamethasone- induced eosinopenia 
resulted in lowered plasma P4 concentrations and 
reduced CL VEGFA protein production in cattle (Kliem 
et al., 2013). Moreover, the role of eosinophils appears 
to be restricted to the repair of the site of follicle rupture 
and early CL development as they are barely detectable 
later in the oestrous cycle when the CL is well 
established, or at the end of the cycle during CL 
regression (Reibiger and Spanel-Borowski, 2000; Rohm 
et al., 2002; Jiemtaweeboon et al., 2011). 

Similar to eosinophils, neutrophils are 
important in the primary, nonspecific stages of acute 
inflammatory reactions and were also observed in large 
numbers, along with a high level of IL-8 (a potent 
neutrophilic chemoattractant), during the early luteal 
phase (d 1–4 of the estrous cycle) in the CL of cows 

(Jiemtaweeboon et al., 2011). They too appear to be 
integral to the resestablishment of the local 
microvasculature and the promotion of the acute 
inflammatory cascade, as both PMN and IL-8 were 
reported to induce angiogenesis in vivo (Koch et al., 
1992; Komatsu et al., 2003) and in vitro (Schruefer et 
al., 2005). These findings were verified in bovine CL 
tissue in a series of in vitro experiments, where 
Jiemtaweeboon et al. (2011) demonstrated that 
supernatant from cultures of early CL tissue could 
induce PMN migration in vitro and increase PMN IL-8 
production. Moreover, IL-8 stimulated endothelial cells 
of the CL to form capillary-like structures, indicating 
that IL-8 acts as a major PMN chemoattractant and a 
strong stimulator of angiogenesis in the early CL 
(Jiemtaweeboon et al., 2011). The concept of functional 
polarization of neutrophils (classic proinflammatory 
versus novel anti-inflammatory) has been proposed to 
explain their action in angiogenesis (Fridlender et al., 
2009). Concomitant with vascular angiogenesis, 
macrophages and endothelial cells infiltrate the 
developing CL. The number of macrophages and 
monocytes in the CL increases during the early stages of 
development in cows, but they are substantially fewer in 
number compared to during CL regression (Penny et al., 
1999; Lawler et al., 1999; Townson et al., 2002). In 
response to local cytokines and other signals, 
macrophages differentiate to acquire a functional 
phenotype that is specific to the requirements of the 
tissue. Within the developing CL, these cells produce 
and secrete various cytokines, such as TNF-α, interferon 
gamma, interleukins, PGs and angiogenic growth 
factors (Sakumoto et al., 2000; Townson and Liptak, 
2003). The cytokine, TNF, is a potent stimulator of 
luteal PGs including PGF2α, PGE2 and PGI2 (Benyo 
and Pate, 1992; Sakumoto et al., 2000). Thus, TNF-α 
and TNF-induced PGE2 have been proposed as key 
regulators of CL vascularization (Okuda and Sakumoto, 
2003; Korzekwa et al., 2008). A defined role for 
macrophages in promoting the vascularization of the 
developing CL is further substantiated by the findings of 
conditional macrophage ablation studies in mice, where 
it was shown that the ablation of macrophages in the 
early CL disrupted the ovarian vasculature and CL 
integrity (Turner et al., 2011). 

There is very little evidence to suggest an 
essential involvement of T lymphocytes in the repair of 
the ovulatory site or the formation of the new CL. In 
fact, reports from several species, including bovine 
(Penny et al., 1999), buffalo (Ramadan et al., 2001), 
human (Best et al., 1996), pigs (Standaert et al., 1991) 
and sheep (Cavender and Murdoch, 1988), are 
equivacol in their descriptions of low numbers of 
CD4⁺and CD8⁺ T lymphocytes in early to late luteal 
phase CL tissue and infiltration of larger populations 
during CL regression. 

While, the immediate response to follicle 
differentiation, E2 production, the LH surge and 
subsequent ovulation is characterized by large numbers 
of PMN and macrophages, a substantial influx of 
endothelial cells also occurs. Moreover, these 
endothelial cells form the greatest cohort of
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proliferating cells in the early CL (Townson and Liptak, 
2003; Reynolds and Redmer, 1999). Microvascular 
growth and development occur at an extremely rapid 
pace in female reproductive tissues and these tissues are 
highly vascular when mature. For example, most (~50–
85%) of luteal cell proliferation occurs in the 
microvascular compartment (Reynolds et al., 1992; 
Reynolds et al, 1998). As a result, in the mature CL, 
microvascular pericytes and endothelial cells comprise 
50–70% of the total cell population (Farin et al., 1986; 
Lei et al., 1991) 
 
Angiogenesis in the CL 
 

In the ovary, the re-establishment of the luteal 
tissue microvasculature from pre-existing capillaries is a 
complex process that is necessary for the delivery of 
adequate levels of hormones and lipoprotein bound 
cholesterol into and out of the CL and ovary (Cherry et 
al., 2008) and is regulated by a number of growth 
factors. In cattle, peak expression of VEGF, its receptor 
VEGFR-2, FGF2, insulin-like growth factor (IGF), 
angiopoietin (ANPT) and hypoxia-inducible factor 
(HIF) family members has been reported from Day 0 - 4 
of the oestrous cycle (Berisha et al., 2016; 2017; 
Castilho et al., 2019). The upregulation of these 
particular factors implies their particular importance for 
angiogenesis and maintenance of capillary structures 
during final follicle maturation and early CL 
development (Berisha et al., 2016). Luteal expression of 
VEGF occurs primarily in steroidogenic cells 
(granulose-lutein cells) and is regulated primarily by 
oxygen (Tropea et al., 2006). Hypoxia strongly induces 
angiogenesis, most likely through the HIF1–VEGF 
signalling pathway. Nitric oxide (NO) is produced by 
endothelial cells of luteal arterioles and capillaries; it is 
a potent vasodilator and stimulates endothelial cell 
proliferation, VEGF production and angiogenesis 
(Reynolds et al., 2000; Reynolds and Redmer, 1999). 
The purpose of luteal arteriole and capillary 
vasodilation is to facilitate increased blood flow and 
consequently delivery of peripheral immune cells to this 
site of tissue repair, regeneration and proliferation in the 
ovary. It is suggested that both FGF2 and VEGF play 
complementary roles in luteal angiogenesis (Robinson 
et al., 2009) as, FGF2 has also been shown to promote 
endothelial cell proliferation and appears to be critical to 
the initiation of the formation of the endothelial network 
in the bovine CL (Woad et al., 2009; Robinson et al., 
2009). Furthermore, the suppression of VEGFA or 
FGF2 expression during the early luteal phase in cattle 
reportedly inhibited endothelial cell proliferation and 
reduced plasma P4 concentration (Kuhnert et al., 2008; 
Yamashita et al., 2008). A body of evidence also exists 
for a role for prostaglandins, including the luteolytic 
prostaglandin (PG) F2𝛼𝛼 in promoting CL 
vascularization and supporting CL growth. Indeed 
PGF2𝛼𝛼 has been shown to positively affect VEGF, 
FGF2, and P4 secretion in the bovine CL (Zalman et al., 
2012; Miyamoto et al., 2010).  

Maintenance of the corpus luteum 
 

The LH surge is the main trigger of ovulation 
and luteinization. Progesterone regulates the length of 
the estrus cycle by influencing the timing of the 
luteolytic PGF2α signal from the endometrium see 
review (Mishra and Palai, 2014). Furthermore, there is 
evidence to suggest that P4 may affect the secretory 
function of the bovine CL in a stage-dependent fashion, 
in an autocrine and paracrine manner that may be 
dependent on cell-to-cell contact and cellular makeup 
(Skarzynski and Okuda, 1999). For example, P4 affects 
the function of the early and mid CL in cattle 
(Skarzynski and Okuda, 1999; Duras et al., 2005), 
stimulating P4, oxytocin and prostaglandin secretion in 
the early CL, but later this is reversed as P4 inhibits 
PGF2a secretion in the mature CL. Recent studies have 
demonstrated that intra-luteal P4 is one of the most 
important factors supporting maintenance of the CL, 
acting to suppress apoptosis in bovine luteal cells 
through the inhibition of Fas and caspase-3 mRNA 
expression and inhibition of caspase-3 activation (Rueda 
et al., 2000; Okuda et al., 2004). Progesterone may also 
act to keep ovarian immune cells in check, by 
supressing T lymphocyte proliferation (Cannon et al., 
2003). 
 

Corpus Luteum Regression 
 

In the absence of an embryo(s) in the uterus, 
the process of CL regression begins on day 16 of the 
oestrous cycle in cattle (McCracken et al. 1999). 
Apoptosis of luteal cells and CL vascular regression are 
regulated by many different factors, however, in most 
species, uterine prostaglandin alpha (PGF2α) acts as the 
principal trigger for luteolysis. Although, it should be 
pointed out that there has been some debate about its 
direct action within the CL (Skarzynski and Okuda, 1999; 
Pate, 2003; Arosh et al., 2016). Nevertheless, PGF2α has 
been proven to acutely decrease P4 secretion by 
inhibiting 3ß-Hydroxysteroid dehydrogenase (3ßHSD) 
and steroid acute regulatory protein (StAR) mRNA 
expression and other rate-limiting steroidogenic enzymes 
in vivo (Tsai and Wiltbank, 1998; Atli et al., 2012), The 
process of luteolysis are understood to proceed with 
PGF2α induced angiolysis and vasoconstriction which 
limits the oxygen and nutrient supply to the tissue during 
luteolysis. Corpus luteum expression of members of the 
endothelin-1 (EDN1) system (EDN1, EDN converting 
enzymes, and EDNA and EDNB receptors) is up- 
regulated by PGF2 α (Mamluk et al., 1999; Klipper et al., 
2010) during luteal regression (Klipper et al. 2004; 
Choudhary et al., 2005; Rosiansky-Sultan et al., 2006). 
Meanwhile mediators of PGF2 α luteolysis, i.e., 
vasoactive peptides, i.e. angiotensin II and atrial 
natriuretic peptide, trigger the luteolytic cascade, 
decrease blood flow and consequently inhibit P4 
secretion (Shirasuna et al., 2004). Endothelin 1 is 
believed to participate in luteal regression, by promoting 
leucocyte migration and stimulating macrophages to
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release cytokines, e.g. TNF-α and interferon-gamma 
(IFN-γ) (Girsh, et al., 1996); for review see also Smith 
and Meidan, 2014. Reportedly, TNF, TNF death 
receptors (TNF-RI), Fas and IFNγ mRNA expression is 
significantly increased during luteolysis in bovine CL 
(Korzekwa et al., 2008). Because of the ability of these 
cytokines to induce apoptosis in CL endothelial cells, 
they have been proposed as key regulators of bovine 
luteolysis (Okuda et al., 1999; Hojo et al., 2010). 
Additionally, cytokine membrane receptors, second 
messengers, including calcium ions and regulatory 
proteins are involved in apoptosis of steroidogenic and 
endothelial CL cells (Petroff, and Pate, 2001).  

 
Immune cells in CL regression 
 

Luteal regression has been likened to an acute 
inflammatory process because of the short duration of 
luteolysis, the characteristic immune cell infiltration 
(neutrophils, macrophages, and T lymphocytes) and 
the dramatic change in vascular diameter and blood 
flow (Shirasuna et al., 2012). Many reports from 
several species describe an increase in lymphocytes or 
macrophages in the CL during luteolysis. Endothelial 
cell secretion of Monocyte chemoattractant protein 1 
(also known as chemokine ligand 2 or CCL2), in direct 
response to TNF and IFN-γ stimulation, has been 
implicated in the recruitment of immune cells into the 
CL during luteal regression (Townson et al., 2002). In 
particular, macrophages and T lymphocytes, are 
proposed to play a central role in structural and 
functional CL regression (Best et al., 1996; Penny et 
al., 1999; Bauer et al., 2001; Townson, et al., 2002; 
Pate et al., 2010). The phenotypes of T lymphocytes 
resident in the bovine CL were previously quantified  
before and after the induction of luteal regression. 
Prior to regression, and in contrast to their ratio in 
peripheral blood, the proportion of CD8+-resident T 
cells was greater than CD4+-resident T cells, however 
there was no difference in the proportion of γδ+ 
lymphocytes in the CL compared to peripheral blood, 
nor was the proportion altered during luteal regression 
(Poole and Pate, 2012). The proportion of CD4+ 
Foxp3+ cells (i.e., T regulatory cells) was greater in a 
functional CL, compared to a CL induced to regress. 
This lead the Authors, to propose that Foxp3+ cells 
may control the actions of activated resident T 
lymphocytes to prevent premature luteal regression, but 
once luteal regression is initiated, a decline in the 
proportion the Foxp3+ cells weakens the inhibitory 
action on T lymphocytes, permitting their release of 
cytokines that may induce luteal cell death. In addition, 
the arrival of large numbers of monocytes, 
macrophages, and other cell types that create an 
inflammatory environment may augment the activity of 
the resident T lymphocytes.  

It is truly remarkable that the activity of 
immune cells during luteolysis is confined to the CL and 
does not spread to the whole ovary, such tight control of 
inflammation ensures that CL tissue degradation 
remains localized with no effects on the surrounding 
tissue.  

Conclusion 
 

It is well recognized that cattle require an 
appropriately functioning immune system for a swift 
and healthy recovery from parturition. The extent to 
which the maternal immune system is involved in 
bovine fertility is somewhat overlooked, yet it’s 
significant role in creating an appropriate 
microenvironment for final oocyte maturation, gamete 
transport and early embryo development reminds us that 
the immune system is intricately integrated in to the first 
stages of establishing pregnancy. Therefore, when 
seeking to optimize cow fertility, we should think first 
of the animal’s immune system and try to maintain its 
integrity, particularly in husbandry situations that 
expose the animal to significant metabolic and 
physiological stress. 
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