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Abstract 
Reproductive tract inflammatory diseases (RTID) present significant health challenges in domestic 
animals, impacting welfare, fertility, and productivity. Traditionally, antibiotics have been the primary 
treatment for these conditions, however, the rise of antimicrobial resistance calls for alternative 
approaches. The microbiome of the female reproductive tract plays a vital role in maintaining 
reproductive health, and emerging evidence suggests that microbiome-based therapies, such as ‘natural’ 
or ‘synthetic’ microbiome transplantation, may offer sustainable solutions for RTID management. This 
review explores the composition and dynamics of the reproductive microbiome in both healthy and 
diseased states in cows, mares, sows, dogs, and cats. It also examines current treatments and the potential 
for microbiome-based interventions to replace or complement antibiotic therapies. Although research on 
microbiome-based therapies for preventing or treating RTID in domestic animals is virtually non-existent, 
vaginal and uterine microbiomes transplantation in mice and women show promise but require further 
investigation to evaluate their efficacy and safety across species with varying reproductive physiologies. 
Additionally, synthetic microbiome therapies present a controlled and reproducible alternative, though 
they face challenges in design, engraftment, and regulatory approval. The transition from antibiotic 
dependence to microbiome-based solutions marks a paradigm shift in veterinary medicine, but successful 
implementation demands a deeper understanding of host-microbiome interactions, rigorous safety 
protocols, and species-specific research. 

Keywords: uterine disease, therapeutics, antibiotic resistance, microbiota, microbiome transfer, synthetic 
microbiome. 

Introduction 

Optimal reproductive health plays a crucial role in domestic species, profoundly influencing their 
welfare, sustainability, profitability, and population management. In livestock such as cattle and pigs, 
reproductive efficiency is essential for meeting production demands and ensuring economic stability 
for farmers. Fertility challenges, for instance, can lead to significant financial losses due to reduced 
calving or farrowing rates, prolonged intervals between births, and increased culling rates. For equine 
populations, maintaining reproductive health is key to preserving genetic diversity and performance 
potential. Similarly, in companion animals like dogs and cats, reproductive health directly affects 
individual well-being and promotes responsible breeding practices. 
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A critical disruptor of reproductive health is dysbiosis, defined as an imbalance in the composition 
of beneficial microbial communities compared to those in healthy individuals (Walker, 2017). In the 
reproductive tract, this microbial ecosystem imbalance leads to infection, inflammation, and 
conditions that compromise health and fertility. In cows and sows, uterine infections such as metritis 
and endometritis, frequently linked to dysbiosis, are major contributors to infertility (Pascottini et al., 
2023a). In mares, altered uterine microbiota can hinder conception and pregnancy success 
(Canisso et al., 2020), while in dogs and cats, dysbiosis-related conditions like pyometra often require 
urgent medical care (Verstegen et al., 2008). 

For decades, microbial presence in the female reproductive tract has been associated with 
inflammation, disease, and poor pregnancy outcomes. Today, we recognize that healthy individuals 
host diverse microbial communities in different body sites including the skin, oral cavity, respiratory, 
gastrointestinal, and reproductive tracts (Khan et al., 2024). These communities comprising bacteria, 
viruses, fungi, and archaea, together with their theatre of activity are collectively called microbiome. 
Functioning in close symbiosis with the host, the microbiome plays a crucial role in supporting 
essential biological processes. The female reproductive tract harbours its own dynamic ecosystem, 
where chemicals, immune components, host cells, and microbes interact to maintain balance 
(Gholiof et al., 2022). While the microbiome’s role in reproductive health is less understood than its 
gut counterpart, emerging evidence highlights its importance in safeguarding against infections, 
enhancing immune resilience, supporting embryo implantation, and pregnancy success 
(Golińska et al., 2021; Zhang et al., 2021; France et al., 2022; Khan et al., 2024). 

In domestic animals, reproductive tract inflammatory diseases (RTID) are predominantly 
treated with antimicrobials. However, the urgent need for alternatives is clear: projections 
suggest antibiotic resistance could claim nearly 40 million lives globally by 2050 if no action is 
taken to stop this trend (Naddaf, 2024). This crisis, fuelled by indiscriminate antimicrobial use, 
threatens both public health and food security. The World Health Organization (WHO) now 
classifies 15 families of antibiotic-resistant bacteria as critical human health risks (WHO, 2024) 
and advises against the use of antimicrobials for growth promotion or disease prevention in 
agriculture. While RTID in animals is rarely fatal, its impact on reproductive performance drives 
reliance on antimicrobial therapies. Innovative yet not conclusive research is shifting toward 
sustainable, non-antibiotic solutions to manage these conditions. 

Advances in understanding host-microbiome interactions have paved the way for pioneering 
therapies aimed at restoring microbial balance and improving health. Among these, microbiome 
transplantation—transferring microbial communities from healthy donors to diseased 
recipients—shows promise by leveraging the microbiome’s natural role in disease prevention 
and health promotion. The objective of this narrative review is to provide insight into the 
composition of the female reproductive tract microbiome in domestic animals in health and 
disease and discuss current treatments for RTID. Building on this foundation, we aim to explore 
the future of RTID management through microbiome-based approaches, including microbiome 
transplantation and synthetic microbiome therapies, while addressing the challenges and 
opportunities in translating these advances into practical veterinary applications. 

Diversity matters: variations within the healthy reproductive tract microbiome 

The microbiota composition varies markedly across different body sites, with the 
reproductive tract harbouring distinct microbial niches such as the vagina, cervix, uterus, 
oviducts, and ovaries. Each organ’s microenvironment fosters unique microbial communities, 
yet their composition and activity in a healthy state can shift due to factors like pH, oxygen 
levels, hormonal fluctuations, temperature, metabolites, circadian rhythms, and other 
physiological dynamics. Species-specific traits further shape these niches (Figures 1, 2 and 3), 
highlighting the adaptability of microbial communities to internal and external influences. For 
instance, the cervix, which serves as a bridge (and a gate) between the vagina and uterus, is 
periodically opening during oestrus, potentially modifying the uterine environment by 
increasing oxygen levels. Moreover, elevated oestrogen during oestrus triggers hyperaemia, 
mucus production, and immune cell migration into the uterine lumen, which may help prevent 
pathogenic bacteria from ascending from the cervix and vagina. Semen deposition during 
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natural or artificial insemination introduces additional microorganisms, further influencing the 
reproductive tract microbiome. In the luteal phase, the cervix closes, oxygen levels drop, 
uterine hyperaemia subsides, immune activity decreases, and the microbiome stabilizes. 

 
Figure 1. Graphical representation of the most common bacterial phyla identified in the equine and 
bovine vagina via 16S rRNA sequencing at different physiological stages. Cycle: healthy, cycling adult 
mares (5-23 yo) at oestrus and dioestrus, and healthy, cycling virgin heifers (13-16 mo) at oestrus and 
dioestrus. Postpartum: mares ~12 h after foaling and cows ≤ 7 d after calving. The bacteria located in the 
intersection between both circles represent the common phyla between species. Adapted from 
Bicalho et al. (2017a), Barba et al. (2020), Quereda et al. (2020) and Płoneczka-Janeczko et al. (2024). 

 
Figure 2. Figure showing the most common bacterial phyla identified in the equine and bovine uterus 
via 16S rRNA sequencing at different physiological stages. Cycle: healthy, cycling (information about the 
moment of oestrus cycle was not available) adult mares (4-18 yo), and healthy, cycling virgin heifers (14 
mo) at oestrus. Pregnancy: mares ~280 d of pregnancy and cows at last trimester of pregnancy. 
Postpartum: mares just after foaling and cows 3-12 d after calving. The bacteria located in the 
intersection between both circles represent the common phyla between species. Adapted from 
Moore et al. (2017), Bicalho et al. (2017b), Holyoak et al. (2022) and van Heule et al. (2023). 
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Figure 3. Overview of the most common bacterial genera identified via 16S rRNA sequencing in the 
vagina of healthy queens, bitches, and sows. Queens were either prepuberal or adult, in or out 
reproductive season, with no significant differences reported for alpha and beta diversity between 
groups. Bitches (5-9 yo) were sampled at 4 different phases of the oestrous cycle (proestrus, estrus, 
diestrus and anoestrus), with no significant differences reported for alpha diversity (richness and 
evenness) among phases. No additional information about age, pregnancy status or moment of the 
oestrus cycle was available for sows. Adapted from Liang et al. (2022), Banchi et al. (2024) and 
Gronsfeld et al. (2024). 

In species like cows (with synepitheliochorial placentation) and dogs (with endotheliochorial 
placentation), blood accumulates in the uterine lumen postpartum, potentially introducing 
hematogenous microbes, often gut-derived, into the uterine microbiome. This environment, 
rich in decomposing material, can promote the growth of commensal yet potentially 
pathogenic bacteria. Effective immune regulation and uterine ecbolic competence are crucial 
for maintaining uterine health at this stage. In species with less invasive placentation (e.g., 
mares and sows), ascending vaginal microbes primarily shape the uterine microbiome, with 
local immune modulation playing a key role in maintaining homeostasis. 

Most research on reproductive tract in domestic animals has concentrated on the vaginal 
and uterine microbiomes, leaving the cervix, oviduct, and ovaries relatively underexplored. The 
following sections review in detail the origin, composition, and dynamics of the healthy 
reproductive microbiome in domestic animals. 

Dynamics of the healthy reproductive tract microbiome in the cow 

Moore et al. (2017) were the first to identify 16S rRNA gene sequences in the uteri of virgin 
heifers around oestrus, with Firmicutes, Bacteroidetes, and Proteobacteria dominating at 
relative abundances of 40, 35, and 10%, respectively. Recently, Quereda et al. (2020) analysed 
vaginal microbiota changes in virgin heifers during the follicular (oestrus) and luteal (day 14 
post-oestrus) phases. They detected slightly greater diversity in the follicular phase, with 27 
bacterial phyla, compared to 23 phyla in the luteal phase. While β diversity analysis revealed 
differences between the two phases, taxonomic variations were limited to low-abundance 
taxa, which were often absent in some samples. Similar to the findings of Moore et al. (2017) 
in the virgin uterus, Tenericutes, Firmicutes, and Bacteroidetes consistently accounted for over 
75% of the vaginal microbiota (Quereda et al., 2020). Thirty-two genera exhibited fluctuations 
in relative abundance across the cycle. Notably, Lactobacillus was present at low levels (<1%) 
throughout but was more abundant in the follicular phase than in the luteal phase. 
Moraes et al. (2024a) explored the colonization of heifer uterine microbiome after 
insemination with sterile PBS to test the hypothesis that this procedure contributes to 
contamination of the uterus by microbes derived from vagina or cervix. They concluded that 
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insemination did not significantly alter the uterine microbiome composition, as measured by 
bacterial culture and 16S rRNA gene sequencing. The bacteria detected in the uterus of virgin 
heifers were typical of those found in the soil, environment, skin, mucous membranes, and 
urogenital tract of animals, including genera such as Bacillus, Corynebacterium, Cutibacterium, 
Micrococcus, Staphylococcus, and Streptococcus. These findings suggest that the uterine 
microbiome in virgin heifers is likely influenced by environmental and host-associated sources, 
following a potential route of transfer: environment → skin → vagina → uterus. A summary of 
the most common bacterial phyla found in the vagina and uterus of non-pregnant, cycling 
heifers is shown in Figures 1 and 2. 

The presence of a microbiota in the bovine pregnant uterus was first described by 
Karstrup et al. (2017) and later confirmed by Moore et al. (2017). The first one identified 
Fusobacterium necrophorum, Porphyromonas levii, and Trueperella pyogenes within the 
endometrium samples collected post-mortem from the pregnant uteri of cows using 
fluorescence in situ hybridization. Parallel 16S rRNA sequencing revealed that the most abundant 
bacterial families were Porphyromonadaceae, followed by Ruminococcaceae and 
Lachnospiraceae. Similarly, Moore et al., (2017) collected samples from cows in the last trimester 
of pregnancy (e.g., amniotic fluid, inter-cotyledonary placenta, placentome tissue, and cervical 
lumen) and found that Firmicutes, Bacteroidetes, and Proteobacteria were the most abundant 
phyla, accounting for 35-42%, 23-33%, and 2-15% of the reads, respectively. Both studies 
reported low but detectable biomass, indicating the presence of a microbial community in the 
pregnant uterus. More recently, Moraes et al. (2024b) revisited this model, conducting both 
bacterial culture and 16S rRNA gene sequencing in parallel. They included samples from the 
external surface of the pregnant uterus for comparison. Samples derived from within the 
pregnant uterus consisted of placentome, inter-cotyledonary placenta, inter-caruncular 
endometrium, amniotic fluid, allantoic fluid, foetal abomasum content, and foetal meconium. 
Notably, Lactococcus lactis, Macrococcus flavus, Staphylococcus hominis, and Streptococcus sanguinis 
were isolated from the internal uterine environment but not from external samples. No distinct 
microbiome signature was identified across different regions of the pregnant uterus. However, 
genera such as Peptoniphilus, Actinomyces, Finegoldia, and Haemophilus were found in relatively 
high prevalence within the uterus but were either absent or present at low levels on the external 
surface. The authors concluded that the pregnant uterine microbiome represents a low-biomass 
environment with very few viable (culturable) bacteria (Moraes et al., 2024b). These findings raise 
an important question: What role, if any, does this low-biomass microbiome play in the 
physiology of a normal, healthy bovine pregnancy? Figure 1 shows the most common bacterial 
phyla found in the uterus of pregnant cows. 

In the early postpartum period, the compartmentalization between the vagina and uterus 
breaks down, leading to a significant increase in microbial biomass within the genital tract 
(Bicalho et al., 2017a). Traditionally, it was believed that bacteria in the postpartum uterus 
ascended from the vagina to colonize the uterine cavity (Çömlekcioğlu et al., 2024). However, 
recent evidence suggests that hematogenous transmission may also play a role in shaping the 
postpartum uterine microbiome. This hypothesis is supported by the observation that 
Fusobacterium necrophorum and Trueperella pyogenes, known to travel from the rumen to the 
liver via the bloodstream causing liver abscesses, might similarly reach the uterus through 
blood circulation. Jeon et al. (2017) tested this idea and identified major uterine pathogens, 
including Bacteroides, Porphyromonas, and Fusobacterium, as part of the core bacterial genera 
in blood samples collected from cows on the day of calving and two days postpartum. Since 
maternal blood enters the uterus after calving, free-floating bacteria can migrate into the 
endometrium, suggesting that hematogenous transmission may be a significant route for at 
least some uterine pathogens. 

The postpartum vagina and uterus are high biomass environments. The dominant bacterial 
phyla in these organs include Proteobacteria, Firmicutes, Bacteroidetes, Fusobacteria, 
Tenericutes, and Actinobacteria (Bicalho et al., 2017a, b). However, there is no consensus on 
the core microbial composition of the healthy bovine genital tract, as uterine microbial 
populations vary widely in diversity and relative abundance among individuals 
(Çömlekcioğlu et al., 2024). Factors such as the stage of the oestrous cycle, time relative to 
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parturition, parity, breed, and genetics influence these microbial dynamics. Additionally, herd 
management factors like nutrition, dystocia, and housing conditions also impact the 
reproductive tract microbiome. Discrepancies in microbial diversity reported across studies 
may further arise from differences in methodological approaches (Lietaer et al., 2021, 2023). A 
simplified overview of bacterial phyla found in the vagina and uterus of healthy postpartum 
cows is shown in Figures 1 and 2. 

In mid-lactation dairy cows, the functional cervix reestablishes compartmentalization between the 
vagina and uterus, resulting in distinct microbiome compositions in each environment (Miranda-
CasoLuengo et al., 2019; Lietaer et al., 2021). The vaginal biomass is typically three to four orders of 
magnitude greater than that of the uterus, with both considered low-biomass environments 
(Lietaer et al., 2021). A study incorporating appropriate controls found that uterine samples had 
higher abundances of Pseudomonadaceae and Burkholderiaceae but lower abundances of 
Pasteurellaceae, Ruminococcaceae, Mycoplasmataceae, Rikenellaceae, Corynebacteriaceae, and 
Lachnospiraceae compared to vaginal samples (Lietaer et al., 2021). Interestingly, no significant 
differences in bacterial community structure (α and β diversities) were observed between different 
regions of the uterus, such as the tip and base of the left and right uterine horns. 

To date, no peer-reviewed studies have characterized the composition of the oviductal or 
ovarian (follicular) microbiome in cows. We hypothesize that the oviductal microbiome 
resembles the uterine microbiome, both in health and disease. The most probable route of 
bacterial colonization in the oviducts is ascending from the uterus, though an alternative 
pathway through the abdominal cavity (via the infundibulum) cannot be ruled out. In humans, 
a follicular fluid microbiome has been documented, but in cows, this area remains entirely 
unexplored (Pelzer et al., 2013). Notably, the cow exhibits a unique anatomical relationship 
between the ovarian arteries and uterine veins, which is essential for the local transfer of 
prostaglandins from the endometrium to the ovary (Knickerbocker et al., 1988). We propose 
that this specialized vascular arrangement may not only facilitate the transfer of prostaglandins 
and inflammatory or bacterial byproducts to the ovaries (Gilbert, 2011), but could also serve as 
a potential route for bacterial translocation. This mechanism might enable bacteria to colonize 
the ovary, potentially leading to the establishment of a follicular microbiome. Further research 
is needed to investigate this hypothesis and elucidate the role of microbial communities in 
ovarian physiology and pathology. 

Dynamics of the healthy reproductive tract microbiome in the mare 

The vaginal microbiome of horses has been reported to consist predominantly of bacteria, 
with archaea detected at minimal abundances (Płoneczka-Janeczko et al., 2024). The core 
vaginal microbiome in healthy mares is primarily composed of the phyla Firmicutes, 
Bacteroidetes, Proteobacteria, and Actinobacteria (Barba et al., 2020; Malaluang et al., 2024) 
(Figure 1) At the genus level, dominant taxa include Porphyromonas, Campylobacter, 
Arcanobacterium, Corynebacterium, Streptococcus, and Fusobacterium (Barba et al., 2020). 
However, the relative abundance of these phyla and genera varies significantly across studies, 
and no consensus exists regarding fluctuations in microbiome composition during the 
oestrous cycle. For instance, Barba et al. (2020) found no differences in microbial communities 
between mares in oestrus and dioestrus. In contrast, Malaluang et al. (2024) observed dynamic 
associations between bacterial species and sampling days, suggesting cyclical variability. 
Notably, methodological differences may contribute to these discrepancies: while both studies 
used swab-based sampling of the caudal vagina, their sampling timelines differed. Barba et al. 
(2020) compared two phases (oestrus and dioestrus, determined via reproductive tract 
examination and hormone levels), whereas Malaluang et al. (2024) analysed four time points 
(ovulation [day 0], day 3, day 7, and days 14) to account for hormonal fluctuations. 

Further research by Heil et al. (2024) demonstrated that the oestrous cycle influences 
uterine microbial communities. While mares in oestrus and anoestrus showed similar phyla-
level composition, distinct genera predominated in each phase. During anoestrus, the uterine 
microbiota exhibited greater diversity and richness, with Rikenellaceae RC9 gut group and 
Peptoanaerobacter as dominant taxa. In contrast, Klebsiella, Aeromonas, Mycoplasma, and 
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Citrobacter were more abundant during oestrus. These findings suggest that oestrogen 
exposure may alter the uterine environment, favouring specific microbial communities and 
potentially impacting fertility outcomes. Methodologically, Heil et al. (2023) found that 
sampling technique—whether swab, low-volume lavage, or biopsy—did not significantly affect 
microbiome profiling results. 

Holyoak et al. (2022) characterized the microbiome of the healthy equine uterus, identifying 
the phyla Proteobacteria, Firmicutes, Bacteroidetes, Actinobacteria, and Kiritimatiellaeota 
(Figure 2), along with the genera Lactobacillus, Escherichia/Shigella, Streptococcus, Blautia, 
Staphylococcus, Klebsiella, Acinetobacter, and Peptoanaerobacter, which were consistently 
present across the 54 samples they collected. Their study also revealed significant geographical 
variation in uterine microbiota composition, with differences in species diversity, richness, and 
evenness among mares from Oklahoma, Louisiana, Australia, and the Southern Mid-Western 
United States. 

Regarding the placental microbiome in mares, van Heule et al. (2023) characterized the 
microbial population in the equine placenta (chorioallantois) of healthy mares, both prepartum 
(280 days of gestation, n = 6) and postpartum (immediately after foaling, 351 days of gestation, 
n = 11), using 16S rDNA sequencing. In both groups, the dominant bacteria belonged to the 
phyla Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidota. The five most abundant 
genera identified were Bradyrhizobium, an unclassified Pseudonocardiaceae, Acinetobacter, 
Pantoea, and an unclassified Microbacteriaceae. Alpha diversity and beta diversities were 
different between the pre- and postpartum samples. Additionally, the abundance of 7 phyla 
and 55 genera varied significantly between the two groups. These findings suggest that the 
caudal reproductive tract microbiome influences (contaminates) the postpartum placental 
microbial composition, with the passage of the placenta through the cervix and vagina during 
parturition having a notable impact. This study, for the first time, provides compelling evidence 
of bacterial DNA in healthy equine placentas and sets the stage for further exploration into the 
role of the placental microbiome in the genesis of placentitis and pregnancy development. 
Bacterial phyla found in the uterus (placenta) of preterm pregnant (280 days of gestation) 
mares are depicted in Figure 2. 

No publicly available data currently exist on the follicular or oviductal microbiome in mares. Given 
the insights gained from human reproductive studies (and the critical role of optimal fertility in the 
equine industry) future research should prioritize characterizing the follicular microbiome, its impact 
on fertility outcomes, and the factors shaping its composition. Similarly, while the oviductal 
microbiome remains poorly understood across species, investigating this niche could unlock vital 
insights into fertilization success and early embryonic development. Addressing these gaps could 
revolutionize reproductive management strategies in equine medicine. 

Dynamics of the healthy reproductive tract microbiome in the sow, bitch, and queen 

Compared to cows and mares, research characterizing the composition and dynamics of 
the healthy reproductive microbiome in sows, bitches, and queens remains limited. Existing 
studies often involve small sample sizes and are further complicated by substantial breed 
variations (specially in dogs), which may introduce bias and hinder generalizability. 

A summary of the most prevalent bacterial genera identified in the vagina of healthy sows, bitches, 
and queens is shown in Figure 3. In healthy sows, the predominant vaginal genera include 
Corynebacterium_1, Clostridium_sensu_stricto_1, Porphyromonas, Anaerococcus, Streptococcus, and 
Bacteroides (Liang et al., 2022). In bitches, the most abundant vaginal genera are Fusobacterium, 
Porphyromonas, Parvimonas, and Escherichia-Shigella (Gronsfeld et al., 2024). In queens, Banchi et al. 
(2024) identified mixed and monoculture communities of Escherichia coli, Streptococcus canis, 
Staphylococcus felis, and Enterococcus spp. as normal components of the healthy vaginal microbiome. 
The vaginal microbiota composition in bitches can be influenced by the oestrous cycle phase 
(Lyman et al., 2019; Golińska et al., 2021), though no significant uterine microbiota changes were 
observed across cycle stages (Golińska et al., 2021). Sterilization may also alter the reproductive 
microbiome in bitches, though findings were limited by small sample sizes and animals sterilized after 
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sexual maturity (Rota et al., 2020). Interestingly, the vaginal microbiota of queens remains unaffected 
by age or season (Banchi et al., 2024). 

In sows, dietary interventions such as late-gestation lysozyme supplementation may 
modulate vaginal microbiota and enhance reproductive efficiency (Xu et al., 2021). Diet-
induced shifts in the faecal microbiome can indirectly influence reproductive tract 
microbiomes. Environmental conditions further shape microbial communities, particularly in 
pigs, where suboptimal management increases susceptibility to stress, reproductive infections, 
and reduced productivity (Einarsson et al., 2008). Vaginal microbiome variations across farms 
underscore the impact of farming practices in sows (Liang et al., 2022). Furthermore, artificial 
insemination may destabilize the sow uterine microbiome due to their large ejaculate volumes, 
particularly when uterine clearance mechanisms are impaired, raising risks of post-breeding 
induced endometritis (PBIE, Pascottini et al., 2023a). 

A small-scale study on bitches (n = 5) and queens (n = 3) undergoing elective caesarean 
sections analysed endometrial, amniotic fluid, meconium, and environmental control 
samples via culture and 16S rRNA sequencing (Banchi et al., 2023). Culture resulted in growth 
of common, non-specific bacteria and sequencing revealed lower bacterial abundance in 
feto-maternal tissues compared to controls. Species-specific microbial profiles emerged, 
with taxonomic differences between canines and felines at the order, family, and genus 
levels. Dominant phyla included Bacteroidetes, Firmicutes, and Proteobacteria, varying by 
tissue and species. Alpha and β diversities did not differ between feto-maternal tissues and 
controls. These results suggest low bacterial biomass in healthy term pregnancies of dogs 
and cats, likely originating from maternal skin contamination rather than a resident (viable) 
community. 

Loss of microbial diversity: a risk for reproductive tract inflammatory diseases 

The female reproductive tract hosts a diverse community of commensal microorganisms 
that play a crucial role in pathogen control through competitive exclusion and immune 
system priming. However, when microbial balance is disrupted, disease can arise. Before 
parturition, anatomical barriers such as the vulvar lips, vestibule-vaginal junction, and cervix 
regulate microbial exchange between the uterus and the vagina. However, postpartum, 
these barriers become compromised, leading to a loss of compartmentalization within the 
reproductive tract. 

Postpartum uterine inflammation is a necessary physiological response across domestic 
species. It facilitates immune cell recruitment, particularly polymorphonuclear leukocytes 
(PMN) and macrophages, which helps regulate bacterial proliferation and prevent uterine 
dysbiosis. During this period, the uterus expels debris through lochia discharge, modulates 
inflammation, and undergoes endometrial remodelling to achieve uterine involution. 
However, factors such as prolonged or difficult labour, unskilled obstetric intervention, and 
retained foetal membranes significantly increase the risk of bacterial contamination and 
subsequent uterine disease. Metritis and endometritis are among the most common 
postpartum uterine disorders in domestic animals. While metritis is a systemic condition that 
can become life-threatening due to widespread infection and systemic illness, endometritis 
is typically localized to the uterus but may extend to nearby structures, including the vagina, 
oviducts, and ovaries. Although not life-threatening, endometritis can have lasting effects on 
fertility, both in the short and long term. 

In mares, sows, and bitches, a substantial volume of ejaculate is deposited directly into the 
uterus during mating. Under normal conditions, uterine contractions and immune responses 
rapidly restore microbial homeostasis, causing transient post-mating endometritis, which 
resolves within hours to days. However, if uterine clearance mechanisms fail or immune 
function is insufficient (or exacerbated), PBIE can develop, disrupting the uterine microbiome 
and impairing fertility. Additionally, in mares and bitches, microbial infiltration into the uterus 
can occur independently of mating (during oestrus), particularly in individuals with poor 
perineal conformation, leading to post-oestrus endometritis. 
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Reproductive tract inflammatory diseases in the cow 

In dairy cows, the physiological postpartum uterine inflammation is challenged by factors such 
as high milk production and calving in open environments, leading to metabolic stress, systemic 
inflammation, compromised immunity, and increased uterine bacterial contamination during the 
early postpartum period (Pascottini and LeBlanc, 2020; Pascottini et al., 2023b). If not effectively 
managed, these challenges can result in RTID, affecting up to 50% of dairy cows after calving. 

Within the first 21 days postpartum, particularly between days 3 and 10, cows are 
susceptible to developing metritis (Sheldon, 2019). This condition involves inflammation of all 
uterine layers—endometrium, myometrium, and perimetrium—and is clinically identified by a 
foul-smelling uterine discharge, accompanied by an enlarged and flaccid uterus. 

Endometrium, the innermost lining of the uterus, comprises two layers: the superficial 
stratum compactum and the deeper stratum spongiosum. Endometritis refers to inflammation 
confined to the stratum compactum, leading to damage of the luminal epithelium, vascular 
congestion, swelling, and infiltration of inflammatory cells, primarily PMN. While postpartum 
endometritis is part of the normal tissue repair process and aids in clearing debris (lochia), 
delayed uterine clearance—evidenced by purulent vaginal discharge (PVD) after 21 days 
postpartum—is associated with reduced reproductive performance (Dubuc et al., 2010). 
Purulent vaginal discharge indicates the presence of pus in the vagina but does not always 
signify endometritis; it can also result from cervicitis, vaginitis, or a combination of these 
conditions (Dubuc et al., 2010; Deguillaume et al., 2012). Clinical endometritis (CE) is 
characterized by PVD accompanied by endometrial inflammation, often diagnosed via 
endometrial cytology (Dubuc et al., 2010). Subclinical endometritis (SCE), on the other hand, 
lacks visible signs but still adversely affects fertility (Wagener et al., 2017). Together, metritis, 
PVD, CE, and SCE constitute the RTID complex in dairy cows. These conditions vary in severity 
and prevalence but collectively impact reproductive health and fertility, posing significant 
challenges to dairy herd management and profitability. 

Culture-dependent studies have established a strong correlation between metritis, PVD and 
CE with the presence of pathogenic bacteria, including Trueperella pyogenes, Escherichia coli, 
Prevotella melaninogenica, and Fusobacterium necrophorum, in samples collected from the 
genital tract of postpartum dairy cows (Table 1) (Williams et al., 2005; Carneiro et al., 2016; 
Gilbert and Santos, 2016). Advancements in culture-independent techniques have further 
identified genera such as Bacteroides, Fusobacterium, Helcococcus, Filifactor, and Porphyromonas 
as being associated with metritis, and Bacteroides, Ureaplasma, Helcococcus, Fusobacterium, 
Trueperella, Prevotella, and Porphyromonas with PVD and CE (Table 1) (Machado et al., 2012b; 
Miranda-CasoLuengo et al., 2019; Pascottini et al., 2020). 

Salpingitis is characterized by infection and inflammation of the oviducts. This condition can 
manifest as acute or chronic and may range in severity from mild to severe, typically resulting from 
infections ascending from the uterus. Histologically, salpingitis is marked by increased vascularization, 
heightened secretion, and notable infiltration of the oviductal tissues with PMN and plasma cells. 
Microbiological analyses of simultaneously-collected uterine and oviductal fluids from cows with 
varying degrees of inflammation have revealed that the same bacterial species are present in both 
the uterus and oviduct. In cases of salpingitis, Trueperella pyogenes has been identified through aerobic 
culture, but Streptococcus pluranimalium and Fusobacterium necrophorum have been detected in 
severe cases of salpingitis (Filatova et al., 2021; Sadeghi et al., 2022). 

Table 1. Summary of the most common bacteria identified in the reproductive tract of females with 
reproductive tract inflammatory disease according to the diagnostic method. 

Species 
Diagnostic 

method 
Disease Phylum Genus Species References 

Cow 
Culture-

dependent 
MET, PVD, 

CE 

Actinomycetota Trueperella Trueperella pyogenes Williams et al. (2005) 
Pseudomonadota Escherichia Escherichia coli Carneiro et al. (2016) 

Bacteroidota Prevotella 
Prevotella 

melaninogenica 
Gilbert and Santos 

(2016) 

Fusobacteriota Fusobacterium 
Fusobacterium 
necrophorum 
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Species 
Diagnostic 

method 
Disease Phylum Genus Species References 

Cow 
Culture-

independent 

MET 

Bacteroidota Bacteroides 
Fusobacterium 
necrophorum 

Machado et al. (2012b) 

Fusobacteriota Fusobacterium 

Bacteroides pyogenes 

Jeon et al. (2016) 

Firmicutes 
Helcococcus 

Miranda-
Casoluengo et al. 

(2019) 
Filifactor Pascottini et al. (2020) 

Porphyromonas 

Rashid et al. (2025) 
PVD, CE 

Bacteroidota Bacteroides Trueperella pyogenes 
Firmicutes Ureaplasma Filifactor alocis 

Fusobacteriota Helcococcus 
Paptoniphilus 

grossensis 

Actinomycetota 

Fusobacterium 

Peptoniphilus obesi 

Trueperella 
Prevotella 

Porphyromonas 
Peptoniphilus 

Peptostreptococcus 
Helcococcus 

SCE 

Firmicutes Anaerococcus 

Aerococcus viridans 

Wang et al. (2018) 
Actinomycetota Corynebacterium Pascottini et al. (2020) 

Pseudomonadota 
Staphylococcus  

Actinobacter  

Lactobacillus  

Mare 

Culture-
dependent 

CEM Pseudomonadota Taylorella Taylorella equigenitalis 
Timoney and Powell 

(1988) 

END 

Pseudomonadota Escherichia Escherichia coli 
Liu and Troedsson 

(2008) 

Firmicutes 

Klebsiella Klebsiella pneumoniae 
Paccamonti and 

Pycock (2009) 

Pseudomonas 
Pseudomonas 

aeruginosa 
 

Streptococcus   

Culture-
independent 

END 
Pseudomonadota Escherichia Escherichia coli 

Virendra et al. (2024) Proteobacteria Salmonella Salmonella enterica 
 Klebsiella Klebsiella pneumoniae 

Sow 

Culture-
dependent 

PVD 

Actinomycetota Trueperella Trueperella pyogenes 

Poor et al. (2022) 

Bacteroidota Bacteroides Bacteroides pyogenes 

Firmicutes Corynebacterium 
Corynebacterium 

diphtheriae 

 Streptococcus 
Streptococcus 
dysgalactiae 

 Staphylococcus Staphylococcus hyicus 

Culture-
independent 

PVD 

Bacteroidota Bacteroides Bacteroides pyogenes 

Firmicutes Streptococcus 
Streptococcus 
dysgalactiae 

 Porphyromonas  

Bitch 

Culture-
dependent 

CEH- Pseudomonadota Escherichia 
Escherichia coli 

Coggan et al. (2008) 
pyometra Firmicutes Streptococcus Ylhäinen et al. (2025) 

  Staphylococcus  

Culture-
independent 

CEH- Mycoplasmatota Mycoplasma 

Pseudomonas 
aeruginosa 

Zheng et al. (2023) 
pyometra Firmicutes Enterococcus 

 Pseudomonadota Haemophilus 
  Pseudomonas 

MET: metritis; PVD: purulent vaginal discharge; CE: clinical endometritis; SCE: subclinical endometritis; END: 
endometritis; CEM: contagious equine metritis; CEH: cystic endometrial hyperplasia. 

Inflammation of the ovaries and surrounding structures is termed oophoritis and 
perioophoritis, respectively. In bovines, perioophoritis is the more common ovarian pathology, 

Table 1. Continued… 
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while oophoritis appears to be rare. The aetiology of ovarian inflammation often stems from 
ovarian manipulations, infections originating from the uterus, or systemic diseases. 
Involvement of the mesosalpinx or salpinx in the inflammatory process exacerbates the 
condition. Trauma from improper palpation, enucleation of the corpus luteum, or manual 
rupture of cystic ovaries are common causes of oophoritis. Repeated or unskilled ovum pick-
up procedures which facilitate bacterial contamination from the anterior vagina into the 
follicles can also lead to oophoritis and adhesions, with suppurative oophoritis and ovarian 
abscesses arising as potential complications. No study has attempted to evaluate the 
composition of the ovarian microbiome in cases of oophoritis or peri-oophoritis, though 
bacteria present in the diseased vagina, uterus, or oviduct are likely implicated. 

Reproductive tract inflammatory diseases in the mare 

Endometritis is the leading cause of infertility and reduced reproductive performance in 
mares (Canisso et al., 2020). This condition is classified into three categories: acute infectious 
endometritis, PBIE, and chronic infectious endometritis (LeBlanc, 2010). The sequence of 
events driving the development of endometritis may follow this chronology: acute 
endometritis can occur postpartum due to delayed uterine involution, with retained foetal 
membranes (failure to expel the placenta within 6-8 hours of parturition) being the most 
important cause (Hurtgen, 2006; LeBlanc, 2008). Following breeding (whether by natural or 
artificial insemination), there is a transient, physiological post-breeding endometrial 
inflammation that typically resolves within 24 to 36 h (Katila, 1995). After this period, resistant 
mares efficiently eliminate exogenous agents (e.g., seminal plasma, microorganisms, uterine 
debris), whereas susceptible mares fail to clear these stimuli, progressing to PBIE (Troedsson, 
1997). Persistence of endometrial inflammation, characterized by free fluid in the uterine 
lumen and an influx of PMN >36 hours post-breeding, is referred to as PBIE. Risk factors for 
PBIE include conformational abnormalities, such as pneumovagina, a pendulous uterus, or 
urine pooling, which delay uterine clearance and promote intrauterine fluid accumulation 
(Reilas et al., 1997; LeBlanc et al., 1998). Additional risk factors include impaired myometrial 
contractility and incomplete cervical dilation, often resulting from repeated foaling, aggressive 
reproductive manipulations, or fibrosis (Troedsson, 2008; LeBlanc and Causey, 2009). These 
conditions are not only associated with PBIE but also with continuous re-infection, which 
causes the condition to evolve from acute to chronic endometritis, often linked with persistent 
microbial colonization and residual tissue damage (Hurtgen, 2006). 

Equine endometrosis is a chronic, progressive, and irreversible fibrosis affecting the 
endometrium (Rebordão et al., 2014). Endometritis and endometrosis are interconnected 
conditions that reinforce each other in a continuous cycle: when endometritis dominates, the 
uterine environment shifts from an inflammatory state to a fibrotic endometrium, increasing 
susceptibility to chronic endometritis and creating a hostile setting for sperm and early 
embryos, ultimately leading to infertility (Katila and Ferreira-Dias, 2022). Lastly, contagious 
equine metritis (CEM) is a venereal disease caused by the bacterium Taylorella equigenitalis 
(Timoney and Powell, 1988). Mating with stallions whose external genitalia are colonized by 
Taylorella equigenitalis (or their contaminated semen) often results in CEM, as does 
insemination with contaminated semen. 

Culture-dependent methods have identified both acute and chronic endometritis, as well 
as PBIE, as associated with bacterial pathogens such as Escherichia coli, Streptococcus spp., 
Staphylococcus spp., Klebsiella pneumoniae, and Pseudomonas aeruginosa (Table 1) (Liu and 
Troedsson, 2008; Paccamonti and Pycock, 2009). More recently, 16S rRNA sequencing was used 
to compare samples collected from the uterus of 30 mares (Virendra et al., 2024), classified 
into healthy (n = 15) and (acute or chronic) endometritis (n = 15). In healthy mares, the most 
abundant phylum, class, order, and family were Firmicutes, Bacilli, Bacillales, and 
Paenibacillaceae, respectively. In contrast, the most abundant corresponding taxonomic levels 
in mares with endometritis were Proteobacteria, Gammaproteobacteria, Enterobacterales, 
and Enterobacteriaceae, respectively. At the genus level, Brevibacillus and Paenibacillus were 
more abundant in healthy mares, while Escherichia, Salmonella, and Klebsiella were more 
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abundant in mares with endometritis (Table 1). A limitation of the study was that before 
sequencing, samples from mares diagnosed as healthy or with endometritis were randomly 
pooled, resulting in three and four sample batches being sequenced, respectively. This 
approach reduced statistical power and masked inherent individual variations, limiting the 
interpretation of the results. As for culture-independent methods to identify cases of mare 
endometritis, no further literature is currently available. 

In mares, oviduct pathology is rarely recognized as a clinical factor contributing to infertility 
or during routine reproductive examinations (Schnobrich, 2019). However, a large study found 
that postmortem evaluations of the oviducts (both macroscopic and microscopic) revealed 
significant lesions in more than 85% of cases, including adhesions, cysts, fibrosis, and 
microscopic findings such as intraepithelial cysts, lymphocytic infiltration, and luminal 
proteinoid material (Saltiel et al., 1986). Mild multifocal subacute salpingitis is common in cases 
of CEM (Acland and Kenney, 1983), but aside from this, there are no studies linking bacteria in 
the context of oviduct pathology. Regarding the ovaries, ovum pick-up for the collection of 
immature oocytes for in vitro embryo production may lead to ovarian lesions, potentially 
resulting in ovarian abscesses. A recent report showed heavy growth of Streptococcus equi 
subsp. zooepidemicus from bacterial cultures of two ovarian abscess cases (Fernández‐
Hernández et al., 2024). Therefore, special sanitary measures should be taken into account 
when repeatedly performing this procedure. 

Reproductive tract inflammatory diseases in the sow, bitch, and queen 

In sows, postpartum metritis is characterized by uterine enlargement and the accumulation 
of intrauterine fluid (Sheldon et al., 2006). This condition is typically associated with severe 
clinical illness and is often linked to sepsis. While the incidence is relatively low, postpartum 
metritis can occur after prolonged labour, dystocia, retained foetal membranes, or in 
unsanitary farrowing conditions (Pascottini, et al., 2023a). Prolonged farrowing is also a major 
factor in the development of postpartum dysgalactia syndrome, also known as mastitis-
metritis-agalactia (MMA, Kemper, 2020). The genesis of MMA is complex and usually involves 
the overgrowth of pathogenic microorganisms, such as Escherichia coli, Klebsiella spp., 
Mycoplasma spp., Streptococcus spp., and Staphylococcus spp., along with their endotoxins 
(Eckel and Ametaj, 2016). These endotoxins, especially from Escherichia coli, play a key role in 
the development of the condition (Marchant et al., 2000). 

Literature on metritis in dogs and cats is limited. However, endometritis is the most 
significant postpartum condition in these species, as well as in sows (LeBlanc et al., 2002). The 
pathogenesis of endometritis is similar across species, with bacterial infections being the 
primary cause of the disease, although the specific pathogens may differ. Escherichia coli 
infections are more commonly reported in dogs and cats (Lawler et al., 1991; Fransson et al., 
1997), while mixed infections (e.g., Escherichia coli, Streptococcus spp., Staphylococcus spp., 
Klebsiella spp., and Mycoplasma spp.) are more prevalent in sows. 

Compared to cows and mares, diagnosing uterine pathologies in sows and companion 
animals is more challenging due to the lack of direct clinical examination methods. Access for 
in vivo uterine collection is difficult in these species, so cervical or vaginal swabs are often taken 
for bacteriological examination in suspected cases of endometritis. A recent large study used 
both culture-dependent (MALDI-TOF) and culture-independent (16S rRNA sequencing) 
methods to explore the microbiota of sows with purulent vaginal discharge (Poor et al., 2022). 
When compared to healthy, Bacteroides pyogenes was prominent in sows with vaginal 
discharge, while Streptococcus dysgalactiae and Staphylococcus hyicus were also found in higher 
relative abundance in affected sows (Table 1). Network analysis revealed important positive 
correlations between potentially pathogenic genera, such as Escherichia-Shigella, Trueperella, 
Streptococcus, Corynebacterium, and Prevotella, which were not present in healthy sows. In 
companion animals, to the best of our knowledge, no culture-independent study has evaluated 
the composition of the uterine or vaginal microbiota in bitches or queens with endometritis. 
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Cystic endometrial hyperplasia (CEH) is a frequently encountered condition in bitches, 
characterized by the abnormal hyperplasia and cystic dilation of the endometrial glands, often 
resulting from prolonged or excessive oestrogen exposure. This condition is more commonly 
observed in bitches than in queens and is particularly prevalent in older, unspayed females or 
those subjected to hormonal treatments aimed at oestrus suppression. Cystic endometrial 
hyperplasia leads to the accumulation of uterine fluid and thickening of the endometrial lining, 
creating an environment conducive to excessive bacterial growth. If untreated, CEH can 
progress to pyometra (De Bosschere et al., 2001; Verstegen et al., 2008). The most commonly 
implicated pathogens in pyometra using culture-dependent methods are Escherichia coli, 
Streptococcus spp., and Staphylococcus spp (summarized in Pascottini et al., 2023a). Amplicon 
sequencing revealed that, compared to healthy dogs, those with pyometra showed higher 
relative abundances of Pseudomonas, Escherichia-Shigella, Mycoplasma, Enterococcus, 
Haemophilus, Vibrio, and Ralstonia, while Mycoplasma, Enterococcus, and Haemophilus were 
comparatively less abundant in healthy controls (Zheng et al., 2023). Salpingitis and oophoritis 
are significantly understudied in companion animals, although two recent reports in bitches 
have provided detailed descriptions of these rare conditions (Hashemi et al., 2024; Nebel-
Karp et al., 2025). 

Current therapies for reproductive tract inflammatory diseases 

Therapeutic strategies for RTID vary across species, and are often shaped by legal 
regulations and economic factors. Regulatory authorities impose strict limitations on 
antimicrobial use in food-producing animals such as cows, mares, and sows (European Union, 
2019a). The 'One Health' initiative, aiming to combat antimicrobial resistance, extends these 
considerations to companion animals like mares and bitches, encouraging the exploration of 
alternative treatments in these species as well. Additionally, legislation in several European 
countries (European Union, 2019b) has imposed more restrictive regulations on antibiotic use, 
not only limiting their application but also requiring antibiograms to justify the use of specific 
drugs, especially last-resort antibiotics. 

In cows, local antimicrobial treatment following a precise diagnosis of CE and PVD is a viable 
option. Additionally, alternative non-antibiotic therapies are being explored, however, to date 
their outcomes are inconclusive. In mares, non-antibiotic agents are commonly used, but 
systemic antimicrobial treatment may be necessary depending on the severity of the condition. 
In sows, the prophylactic use of oxytocin and nonsteroidal anti-inflammatory drugs (NSAIDs) 
during the peripartum period has shown promise in reducing the incidence of postpartum 
endometritis. In bitches, treatment protocols are less defined, and therapy is typically 
administered based on clinical symptoms in affected animals. 

Therapies for reproductive tract inflammatory diseases in the cow 

Metritis, PVD, and CE are reproductive disorders linked to dysbiosis, characterized by an 
increased relative abundance of pathogenic bacteria within the genital tract. In metritis, these 
bacteria and their toxins can enter the bloodstream, leading to systemic inflammation, fever, 
and septicaemia. In contrast, PVD and CE are localized conditions that do not cause systemic 
illness. Consequently, metritis involves parenteral antimicrobial treatment, whereas PVD and 
CE are typically managed with intrauterine therapy. 

Studies indicate that antimicrobial treatment significantly improves metritis resolution 
rates. For example, clinical cure rates increase from approximately 60% in saline-treated 
controls to around 75% in cows receiving subcutaneous ceftiofur (Chenault et al., 2004). 
Regarding reproductive performance, cows with metritis treated with ampicillin or ceftiofur 
exhibited reproductive outcomes similar to healthy cows at first insemination (Lima et al., 
2014). While this study lacked an untreated control group, it suggests that antimicrobial 
therapy mitigates the negative reproductive impact of metritis. Additionally, anti-inflammatory 
therapy has been explored to manage fever and improve feed intake in affected cows 
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(Pohl et al., 2016; Paiano et al., 2024). However, current evidence supports its use only in 
combination with antimicrobial treatment, not as a standalone therapy. 

For PVD and CE, intrauterine cephapirin administered at diagnosis has been associated with 
improved reproductive performance compared to no treatment (Denis-Robichaud and Dubuc, 
2015). However, because these conditions are not life-threatening and antimicrobial resistance 
is a growing global concern, the routine use of antibiotics for PVD and CE remains controversial. 
Prostaglandin F2α (PGF2α) and its analogues have been investigated as alternative therapies 
to enhance uterine clearance and improve reproductive performance (Lefebvre and Stock, 
2012). While early trials suggested potential benefits, they were criticized for unclear disease 
definitions and inadequate statistical power (LeBlanc et al., 2011). Subsequent meta-analyses 
found no significant improvement in healing or fertility outcomes following PGF2α treatment 
in cows with PVD or SCE (Lefebvre and Stock, 2012). Nevertheless, anecdotal evidence from 
veterinarians suggests that PGF2α may be beneficial in PVD or CE cases where a corpus luteum 
(CL) is present. The mechanism involves luteolysis, which reduces progesterone’s 
immunosuppressive effect, alongside enhanced uterine contractions that aid bacterial 
clearance. Additionally, oestrus induction increases uterine blood flow, promoting the 
recruitment of PMNs and immunoglobulins, which further support bacterial elimination. For 
SCE, a large, well-designed study demonstrated that intrauterine cephapirin administration at 
diagnosis improved first-service conception rates compared to untreated cows with SCE 
(Denis-Robichaud and Dubuc, 2015). This suggests that some SCE cases may involve mild 
bacterial infections or delayed uterine involution, similar to the recovery process observed in 
cows post-metritis or CE. As a result, these cases may benefit from targeted, local antimicrobial 
therapy. 

Given the concerns over antimicrobial resistance, alternative, non-antibiotic therapies for 
RTID have been explored. Investigated treatments include intrauterine infusion of 50% 
dextrose, herbal extracts, ozone, and autologous serum (Heuwieser et al., 2000; 
Escandón et al., 2020; Eshghi et al., 2022; Paiano and Baruselli, 2022). However, many studies 
lacked proper randomization, statistical power, or double-blinding, limiting the reliability of 
their findings. While uterine lavage with saline may help flush out inflammatory cells, it remains 
impractical as a field treatment (Dini et al., 2015). Additionally, vaccination strategies targeting 
uterine pathogens have shown promise in experimental studies, with bacterin and toxoid 
vaccines administered to heifers in late pregnancy reducing metritis incidence (Machado and 
Silva, 2020). However, no commercial vaccine is currently available. Similarly, thorough 
research is being conducted on the role of antimicrobial peptides (AMPs) in reproductive health 
and their potential as alternative therapeutic agents. Antimicrobial peptides are small, cationic 
molecules that form part of the innate immune response (Li et al., 2018) that play a protective 
role in the reproductive tract (Subramanyam and Yeddula, 2024). It has been described that 
some of these molecules, such as cathelicidins, are implicated in the immune response during 
bovine endometritis (Li et al., 2021). Although promising results have been reported using 
AMPs to treat Staphylococcus aureus-induced endometritis in mice (Li et al., 2020), to date most 
studies in cattle have focused primarily on the gastrointestinal tract, and the broader 
implementation remains limited due to concerns regarding their in-vivo effectiveness, stability, 
and high cost of production (Rodrigues et al., 2022). 

The use of bacteriophages constitutes another alternative to antibiotics. Some in-vitro 
studies reported the complete growth inhibition of Escherichia coli isolates from the uterus of 
postpartum dairy cows, including multidrug-resistant bacteria (Bicalho et al., 2010; 
Santos et al., 2010). However, in-vivo studies did not observe a beneficial effect of 
bacteriophage therapy for prevention of metritis and CE (Machado et al., 2012a; Meira et al., 
2013). Consequently, additional clinical studies are needed to determine the true potential of 
bacteriophages, accounting for the main limitations such as host specificity and the selection 
of phage-resistant bacterial strains (Zduńczyk and Janowski, 2020). 

Probiotics have gained attention as a sustainable approach to mitigate uterine diseases 
by modulating the vaginal and uterine microbiota and enhancing the host’s immune 
response (Wieërs et al., 2020). The rationale for employing probiotics in cattle originates 
from their successful application in addressing human reproductive infections, particularly 
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bacterial vaginosis (Wang et al., 2019). In humans, the vaginal microbiota is predominantly 
composed of Lactobacilli, which inhibit pathogenic microorganisms by lowering vaginal pH 
through lactic acid production (Stojanović et al., 2012). Additional mechanisms include the 
synthesis of hydrogen peroxide, bacteriocins, and surface-binding proteins that prevent 
bacterial adhesion to uroepithelial cells (Stojanović et al., 2012). However, when compared 
to humans, the bovine vaginal microbiota exhibits a significantly lower relative abundance 
of Lactobacilli (Swartz et al., 2014). This disparity aligns with differences in vaginal pH 
between species: the bovine vaginal pH ranges from 5.5 to 8.6, whereas the healthy human 
vaginal pH is more acidic, typically between 3.8 and 4.5 (Beckwith-Cohen et al., 2012). 
Consequently, the suitability of lactic acid bacteria (LAB) as probiotics for modulating the 
genital tract microbiome in cattle remains uncertain. To date, no study has demonstrated 
successful colonization or sustained persistence of LAB in the bovine genital tract following 
treatment. Nevertheless, both in vitro models and field studies have shown promising 
results, with LAB enhancing immune responses and reducing the incidence of uterine 
diseases in dairy cows (Genís et al., 2016, 2017). However, many field studies have been 
limited by small sample sizes or lack of evaluation of uterine invasion and persistence of LAB 
post treatment, rendering their findings preliminary and necessitating cautious 
interpretation (Genís et al., 2018; Madureira et al., 2023). 

Therapies for reproductive tract inflammatory diseases in the mare 

Effective treatment of RTID in mares aims to strengthen uterine defence, combat harmful 
bacteria, and manage inflammation. To achieve this, several approaches were considered, 
including surgical correction of anatomical abnormalities (such as the Caslick’s procedure), 
improving physical drainage post-insemination or breeding, regulating the inflammatory 
response, and local treatment aiming at preventing bacterial proliferation (LeBlanc, 2010). 

For years, post-breeding inflammation has typically been managed by promoting the 
physical removal of uterine fluid, with uterine lavage and the use of ecbolic drugs (e.g., 
oxytocin) being the most common treatments (LeBlanc, 2010; Morris et al., 2020). In addition 
to these core mechanical strategies, therapies targeting the immune response, such as anti-
inflammatory drugs, antibiotics, mucolytics, and immunomodulatory treatments, may also be 
used (Morris et al., 2020). However, it is important to recognize that post-breeding 
inflammation is a natural defence mechanism, and healthy mares can effectively evacuate 
uterine fluid on their own. Therefore, interventions should be reserved for mares that require 
assistance, and routine treatments should be avoided (Katila and Ferreira-Dias, 2022). 

Often combined with uterine lavage, antibiotics are infused into the uterus or administered 
systemically after mating, with β-lactams and aminoglycosides being the most commonly used 
(Canisso et al., 2020). Although this approach is widely practiced by veterinarians, the 
administration of antimicrobials is most effective when bacterial contamination is identified as 
the cause of endometritis (Liu and Troedsson, 2008; Canisso et al., 2020). However, the 
irrational and routine use of antibiotics over recent decades has contributed to the 
development of antimicrobial resistance, posing a threat to both animal and human health. 
Common bacteria isolated from mares with endometritis, including Streptococcus 
zooepidemicus and Escherichia coli, have shown significant resistance to commonly used 
antimicrobials (Canisso et al., 2020). Additionally, antibiotic treatment failure in endometritis 
cases may result from biofilms produced by certain gram-negative bacteria, yeast, and fungi. 
Biofilms are complex microbial aggregates encased in an extracellular matrix, living in 
symbiosis, which protect the microorganisms from antibiotics (Walker, 2008; LeBlanc, 2010). 
Biofilms contribute to antibiotic resistance by limiting drug penetration reducing the 
concentration of the drug reaching bacterial cells. Furthermore, the density of target cells 
within a biofilm, a phenomenon known as the inoculum effect, can influence antibiotic 
susceptibility, limiting drug penetration and reducing the metabolic and growth rates of 
bacteria within them (LeBlanc, 2010). Pseudomonas aeruginosa, Staphylococcus epidermidis, 
Escherichia coli, and Enterobacter cloacae—bacteria involved in mare endometritis—are known 
to be strong biofilm producers (LeBlanc, 2010). To enhance the effectiveness of antimicrobials 
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and disrupt biofilms, the addition of tris-EDTA or dimethyl sulfoxide (DMSO) has been shown 
to be beneficial (LeBlanc, 2010; Ferris et al., 2016; Loncar et al., 2017; Morris et al., 2020). 
Finally, although the mechanism is not yet fully understood, continuous and excessive use of 
antimicrobials has been linked to a higher incidence of fungal endometritis in mares (Liu and 
Troedsson, 2008). Treatment strategies for fungal endometritis have been discussed 
extensively elsewhere (Dascanio et al., 2001; Blanchard et al., 2003). 

To address the growing issue of antimicrobial resistance, current research is focusing on 
alternative therapies to minimize the use of antibiotics. In the context of endometritis in mares, 
these therapies aim to regulate inflammation while also providing some antibacterial effects 
(Morris et al., 2020). The use of NSAIDs remains controversial, as they may reduce the 
production of PGF2α and impair myometrial contractions, which could delay uterine clearance 
(Canisso et al., 2020). In fact, delayed uterine clearance and increased inflammatory responses 
have been observed in mares treated with non-selective COX-2 NSAIDs (Canisso et al., 2020). 
An alternative approach involves the use of selective COX-2 NSAIDs, such as firocoxib or 
vedaprofen (Rojer and Aurich, 2010; Friso et al., 2019). Another potential therapy is chemical 
curettage, utilizing agents such as DMSO, hydrogen peroxide, magnesium sulfate, kerosene, 
and diluted disinfectants (Liu and Troedsson, 2008). Although research on the effectiveness of 
these agents is limited, it has been suggested that their success may be linked to the strong 
inflammatory response they trigger, which can stimulate myometrial contractions and 
enhance uterine clearance (Liu and Troedsson, 2008). 

An alternative approach to treating endometritis in mares involves regenerative medicine, 
including the use of platelet-rich plasma (PRP) and stem cells (Del Prete et al., 2024). 
Intrauterine administration of PRP has been shown to regulate the uterine inflammatory 
response to semen by reducing the concentration of PMN, which leads to a reduction in 
endometrial thickness, oedema, and intrauterine fluid in mares (Reghini et al., 2016; 
Morris et al., 2020; Del Prete et al., 2024). Additionally, clinical trials have reported improved 
pregnancy rates in mares with reproductive challenges following PRP treatment (Metcalf, 
2014). Moreover, recent studies suggested that fertility outcomes in mares treated with 
mesenchymal stem cells (MSCs) were significantly improved compared to those treated with 
PRP (Del Prete et al., 2024). Despite the promising results of regenerative medicine for treating 
endometritis, the number of clinical studies remains limited, and many of these studies have 
biases and variability in protocols. Therefore, further in vitro and in vivo research is required to 
optimize these therapies before they can be widely implemented in routine veterinary practice 
(Del Prete et al., 2024). 

In mares, LAB such as lactobacilli and enterococci, are commonly used in commercial 
probiotic formulations (Lee et al., 1999). However, the reported beneficial effects vary across 
different isolates of vaginal lactic acid bacteria. Despite this variability, the results demonstrate 
promising potential for their use as equine probiotics (Fraga et al., 2008). More recently, five 
strains of Enterococcus spp. (E. faecium [two strains], E. hirae [two strains], and E. gallinarum [one 
strain]) were identified and selected for their beneficial properties in preventing urogenital 
infections in horses. This research paves the way for the development of a multi-strain 
probiotic formula aimed at preventing and treating equine endometritis (Silva et al., 2024). 

Therapies for reproductive tract inflammatory diseases in the sow, bitch, and queen 

The primary treatment for RTID in sows and companion animals remains antibiotic therapy, 
despite concerns over antibiotic resistance and the potential risks to public health. In 
companion animals, the use of antibiotics is often influenced by pressure from breeders, which 
can contribute to overuse. Milani et al. (2012) reported that in some kennels, antibiotics are 
administered before and after birth to reduce puppy mortality. However, their study 
demonstrated that excessive antimicrobial use in breeding bitches during the peripartum 
period reduces the diversity of bacterial flora without decreasing the frequency of isolation of 
potentially pathogenic bacterial strains. Furthermore, pathogenic bacteria exhibit increased 
resistance to antibiotics, putting puppies at a higher risk of difficult-to-treat infections 
(Milani et al., 2012). 
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In the context of public health safety, domestic dogs have been identified as a potential 
source of multidrug-resistant Escherichia coli strains in households (Carvalho et al., 2016). In 
pigs, Wang et al. (2020) reported the isolation of Streptococcus porcinus in cases of 
endometritis. This bacterium is commonly associated with pyogenic infections, abortions, and 
endocarditis in pigs, as well as genitourinary tract infections in humans. The isolated strain 
exhibited multidrug resistance to aminoglycosides, quinolones, macrolides, and tetracyclines, 
while remaining sensitive only to certain β-lactams such as penicillin G, cephalothin, cefazolin, 
cephradine, and cefuroxime (Wang et al., 2020). The development of antibiotic resistance in pig 
farms represents a serious threat to human health, emphasizing the need for careful 
management of antibiotic therapy and the exploration of alternative therapeutic approaches. 

Some research groups are actively working to develop treatment methods that are 
independent of antibiotics or are exploring alternative therapeutic substances in sows. Ye et al. 
(2021) proposed lysostaphin (a bacteriolytic enzyme that specifically targets and kills 
Staphylococcus species) as a potential alternative to antibiotics for treating endometritis in pigs. 
Intrauterine administration of lysostaphin significantly reduced the number of pathogenic 
bacteria, particularly Staphylococcus aureus, showing better results than oxytetracycline, 
highlighting its potential as a substitute for conventional antibiotics (Ye et al., 2021). The role 
of NSAID is of significant interest, particularly after farrowing. Studies have explored their 
effectiveness in addressing weak piglet syndrome and improving litter survival. Drugs like 
ketoprofen (Claeyé et al., 2015), meloxicam, and paracetamol (Plush et al., 2021) demonstrate 
anti-inflammatory effects that help reduce mucosal inflammation. However, there is a lack of 
dedicated publications on the impact of NSAIDs on uterine health, emphasizing the need for 
further research in this area. 

It is important to note that the available information on the effectiveness and safety of 
various treatment methods in dogs, cats, and pigs is limited, with most studies focusing on 
individual cases or small animal groups, making it difficult to draw broad conclusions. 
Consequently, there is a pressing need for more extensive research to better understand 
disease mechanisms and develop optimal non-antibiotic therapeutic strategies for these 
species. 

From dysbiosis to balance: exploring the role of microbiome transplantation for 
managing reproductive tract inflammatory diseases in domestic animals 

Since the pioneering studies on the gut microbiome and its role in obesity 
(Sonnenburg et al., 2004; Bäckhed et al., 2005), microbiome research has evolved significantly. 
The launch of the NIH Human Microbiome Project (NIH, 2025b) marked the first large-scale 
effort to map the human microbiome, shifting the field from simply cataloguing microbial 
communities to understanding the complex principles that regulate their structure, function, 
and dynamics. This deeper insight into host-microbiome interactions and microbial 
ecosystems has paved the way for advanced microbiome-based therapies aimed at restoring 
microbial balance and enhancing host health. One of the most promising approaches is 
microbiome transplantation—transferring a healthy donor's microbiome to a recipient to 
improve health outcomes, treat disease, or prevent illness. By leveraging the essential role of 
microorganisms in maintaining physiological homeostasis, microbiome transplantation 
represents a powerful tool for addressing microbiome-associated disorders across various 
species. 

Currently, the use of microbiome transplantation to prevent and treat RTID in domestic 
species is virtually non-existent. However, much can be learned from its application in other 
species, such as humans and mice. The role of microbiome transplantation in restoring balance 
and diversity has been extensively studied for treating microbiome-associated diseases in the 
human gut. As a result, faecal microbiome transplantation (FMT) has become the most 
established and widely used microbiome therapy, primarily for treating Clostridium difficile 
infections (Karimi et al., 2024). In animals, the historical use of FMT is known as ‘transfaunation’, 
which is primarily used in ruminants to restore microbial populations in the rumen, addressing 
digestive and metabolic disorders (DePeters and George, 2014). The origins of transfaunation 
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can be traced back to the 17th-century in Italy, where it was first documented as a method for 
restoring normal rumination (Borody et al., 2004). In recent years, interest in FMT has 
expanded beyond ruminants to include other livestock and companion animals, both for 
therapeutic and preventive purposes. For instance, FMT has been successfully used to mitigate 
porcine circovirus-associated disease in piglets, treat canine parvovirus in dogs, and manage 
colitis in horses (Mullen et al., 2018; Niederwerder, 2018; Pereira et al., 2018). The effectiveness 
of FMT has also been demonstrated in wildlife veterinary medicine, aiding animal recovery 
after antibiotic treatments (Bornbusch et al., 2024). 

The growing interest in microbiome therapies is largely driven by the increasing prevalence 
of chronic diseases linked to microbiome imbalances. Just as the gut microbiome is essential 
for overall health, the microbiomes of the vagina and uterus are crucial for reproductive well-
being and fertility. While extensive research on FMT has provided valuable insights into the 
potential of microbiome therapies, vaginal microbiota transplantation (VMT) is less established 
and still in the early stages of research. Studies using rat models of vaginal dysbiosis (or 
vaginosis) suggest that VMT may be effective for reducing inflammation, promoting 
Lactobacillus proliferation, and mitigating symptoms. In humans, the first case study of VMT 
was conducted in 2019 with five patients, exploring its use as a therapeutic alternative for 
women with symptomatic, recurrent, and intractable vaginosis (Lev-Sagie et al., 2019). 
Standard treatment for vaginosis typically involves antibiotics, either systemic or vaginal. 
However, severe cases can relapse at rates as high as 50-70% within one year (Bradshaw et al., 
2006; Wu et al., 2022). In such instances, maintenance antimicrobial treatment is often 
recommended, but this can increase the risk of vaginal candidiasis (Shukla and Sobel, 2019). 
While probiotic treatments with oral or vaginal administration of Lactobacillus strains show 
mixed results in the literature, a proof-of-concept study demonstrated promising, long-lasting 
symptom improvements after single or repeated VMT in four out of five patients with vaginosis. 
Recently, a study of a 30-year-old woman with recurrent vaginosis for nine years and a history 
of three late pregnancy losses confirmed that VMT successfully eradicated the condition, 
leading to a sustained, long-term shift in the vaginal microbiome toward a more balanced state. 
Notably, five months post-transplantation, the patient conceived and then delivered a healthy 
baby at full term (Wrønding et al., 2023). Remarkably, this outcome was achieved without prior 
antibiotic treatment, underscoring the potential of microbiome transplants for treating 
vaginosis and other chronic diseases associated with microbiome imbalances in the 
reproductive tract. This approach is particularly beneficial as it avoids the risks of antibiotic 
resistance and minimizes disruption to other microbiomes, such as the gut. 

The potential benefits of direct uterine microbiome transplant (UMT) over VMT in treating 
key RTID—such as metritis and endometritis in dairy cows, PBIE in mares, postpartum uterine 
infections in sows, and pyometra in bitches and queens—should be carefully evaluated. To 
date, no published studies have explored the application of VMT or UMT in these domestic 
species. Existing research is limited to preliminary studies in rats, where VMT led to shifts in 
the uterine microbiota composition, and transplants from women with chronic endometritis 
induced inflammation-like lesions in the rat endometrial tissue (Wang et al., 2021). These 
findings raise important questions about the potential risks and benefits of VMT in 
reproductive health, particularly in species with differing reproductive physiology. 

Physiological differences in reproductive cycles across species may significantly impact the 
effectiveness of microbiome transplants in treating RTID associated with microbiome 
dysbiosis. In women, the cervix remains tightly closed except during menstruation, ovulation, 
and childbirth, allowing for microbial transfer between the vaginal and uterine microbiomes at 
these time points. In contrast, in cows, mares, and sows, the cervix opens only during oestrus 
or parturition, with the duration of oestrus varying by species. Mares experience a prolonged 
oestrus lasting 5-7 days, whereas in cows and sows, it is much shorter—typically one to two 
days. Additionally, species with extended dioestrus phases, such as dogs and cats, undergo 
oestrous cycles only about twice a year, meaning the cervix opens for microbial colonization 
from the vagina to the uterus only during these infrequent periods. These variations 
underscore the importance of species-specific considerations when designing experimental 
studies on reproductive microbiome transplantation. Understanding these factors will be 



Microbiome-based therapies in animal reproduction 
 

 

Anim Reprod. 2025;22(3):e20250030 19/31 

essential in determining whether UMT provides a more targeted and effective approach than 
VMT for treating RTID in domestic animals. 

Risks and challenges of ‘natural’ microbiome transplantation 

Apart from the physiological differences in reproductive cycles among species, several 
other challenges must be considered when performing reproductive tract microbiome 
transplants. One major concern is that, despite being sourced from healthy individuals, 
microbiome transplants often contain unidentified species that may be pathogenic, potentially 
exacerbating disease symptoms (Bokoliya et al., 2021). Additionally, they pose a risk of 
infection or triggering an excessive immune response, particularly in immunocompromised 
recipients (Carlson, 2020; Merrick et al., 2020). Therefore, prior to the treatment an extensive 
screening process is essential to assess the safety and risks associated with the microbial 
composition of donor samples. The procedure involves metagenomic sequencing, culture-
based pathogen screening, and functional assays to detect potential harmful species. 
Furthermore, donor selection criteria must account for factors such as age, reproductive 
status, and antibiotic exposure history, as these can influence microbiome composition and 
transplant efficacy (Merrick et al., 2020). Beyond safety concerns, another challenge is the 
ecological compatibility of the transplanted microbiome. The recipient’s native microbial 
community, immune system, and reproductive environment may not support the engraftment 
of donor microbes, leading to poor colonization or transient effects (Smillie et al., 2018). For 
instance, multiple studies have reported unpredictable patient outcomes following FMT, 
largely due to the complex and poorly understood ecological interactions between donor and 
recipient microbiomes (Kazemian et al., 2020). Furthermore, the standardization of 
microbiome transplant protocols remains a critical issue, particularly in veterinary applications 
where interspecies variability adds another layer of complexity. Factors such as the optimal 
route of administration (e.g., intrauterine vs. vaginal infusion), dosage, stage of the oestrus 
cycle, and frequency of transplantation require further investigation. 

Another major concern is the use of antibiotics prior to microbiome transplantation. 
Although transplants are typically performed one to two days after the final antibiotic dose to 
mitigate residual effects, leftover antibiotics in recipients can still impact the engraftment of 
donor bacteria (Singh et al., 2022). Furthermore, in the context of FMT antibiotic cocktails are 
commonly administered orally to deplete the pathogen load and diminish the existing 
dysbiosis, thereby creating a more favourable environment for the transplanted healthy 
microbiota. However, this approach fails to account for its systemic effects on microbial 
communities in other body sites, including the reproductive tract (Wang et al., 2024). 
Furthermore, antibiotic use prior to microbiome transplantation raises concerns regarding the 
horizontal transfer of antibiotic resistance genes (ARGs), which may facilitate the dissemination 
of resistant pathogens (Tan et al., 2025). These risks underscore the complex interplay 
between the benefits and drawbacks of antibiotic pretreatment. While VMT without prior 
antibiotic administration has demonstrated efficacy in treating vaginosis (Wrønding et al., 
2023), evidence from a meta-analysis suggests that in patients with ulcerative colitis, antibiotic 
pretreatment may enhance the efficacy of FMT (Keshteli et al., 2017). 

Challenges associated with microbiome transfers have also impacted study designs. Ethical 
concerns and biosafety considerations have led to restrictions on clinical applications, as seen 
in the rejection of VMT for human use due to concerns about microbiota superinfection or 
transmission of infectious agents such as HIV. Consequently, researchers have had to adapt 
their approaches, often limiting initial investigations to animal models before seeking approval 
for human trials (Chen et al., 2021) . 

To overcome these challenges associated with microbiome transfers, two primary 
strategies are being pursued. Firstly, rigorous clinical trials, such as NCT04046900 (NIH, 2025a), 
a randomized trial of VMT to restore a Lactobacillus dominant vaginal microbial community in 
women with recurrent vaginosis, are being conducted to systematically evaluate the safety, 
efficacy, and long-term consequences of microbiome-based therapies. These studies are 
crucial in establishing standardized protocols, optimizing donor selection criteria, and 
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identifying risk mitigation strategies to enhance the clinical translation of microbiome 
transplants. Secondly, researchers are investigating the development of synthetic or 
engineered microbiomes as a more controlled, standardized, and predictable alternative to 
traditional microbiome transplantation. The potential benefits and methodologies of synthetic 
microbiomes will be explored in the following section. 

Synthetic microbiome transplantation: a future solution? 

The challenges associated with microbiome transplantation, combined with the inherent 
complexity and variability of host-associated microbiomes, have driven scientists to explore an 
alternative approach: the development of synthetic microbial communities designed to 
replicate the composition and functionality of their natural counterparts (Großkopf and Soyer, 
2014). These engineered consortia offer several advantages over donor-derived microbiome 
transplants (Table 2). Furthermore, not only can they provide more controlled and 
standardized therapeutic applications, but they also serve as powerful model systems for 
studying the functional, ecological, and structural dynamics of native microbiota. 

Table 2. Comparison of key features of natural versus synthetic microbiome transplants. 

Feature Natural microbiome transplant (Donor-Derived) 
Synthetic microbiome transplant 

(Bioreactor-Grown) 

Diversity 
Highly diverse, contains full microbial ecosystem (including 

unknown/uncharacterized species) 
Limited to selected strains, may lack 

some functional interactions 

Efficacy 
More likely to establish a stable microbiome due to presence of 

native microbial networks 
May require optimization to achieve 

colonization and stability 

Safety 
Risk of pathogen transfer (e.g., viruses, antibiotic-resistant 

bacteria) 
Free from pathogens if produced under 

controlled conditions 
Standardization Variable between donors, difficult to ensure consistency Highly controlled and reproducible 

Regulatory Approval 
More challenging due to donor variability and screening 

requirements 
Easier to obtain approval due to known 

composition 

Production & Scalability Requires continuous donor screening and collection 
Can be mass-produced under sterile 

conditions 

Ethical Considerations Concerns about donor selection and consent 
No ethical concerns related to donor 

sourcing 

Research on synthetic microbiome transplantation in reproductive tract health remains scarce, 
even in human and mouse models. One study using a Gardnerella vaginalis-induced vaginosis mouse 
model demonstrated that a synthetic microbial consortium, composed of four lactic acid bacteria 
isolated from the vaginas of healthy women, effectively mitigated vaginal tissue damage, facilitated 
microbiota restoration, reduced pro-inflammatory cytokine secretion (IL-1β and IL-8), and inhibited 
NF-κB activation (Li et al., 2023). Neutrophils and macrophages play a central role in responding to 
microbial dysbiosis by producing cytokines such as IL-1β and IL-8, which mediate immune cell 
recruitment and inflammatory responses. Suppressing these cytokines reduces excessive 
inflammation, which is crucial for preventing tissue damage and restoring homeostasis. These 
findings highlight the potential of synthetic microbial consortia in modulating host immune responses 
related to RTID. However, the study also reported that natural VMT was more effective than synthetic 
bacterial community transplantation in suppressing Gardnerella vaginalis-induced inflammation, 
suggesting that naturally derived microbiomes may retain functional advantages in immune 
regulation (Li et al., 2023). 

Producing synthetic microbiomes remains a formidable challenge, primarily because it requires a 
comprehensive understanding of natural microbial communities—a “healthy template.” This is 
particularly complex in the context of reproductive tract microbiomes in both women and domestic 
animals, as discussed in this paper. Our current understanding of microbiome complexity extends 
beyond taxonomic composition; growing evidence suggests that microbial functionality, such as 
metabolic activity, is more critical than the taxonomic identity of individual species (Krautkramer et al., 
2021). As a result, overall microbial abundance may be less important than the functional roles of key 
community members. This paradigm shift refocuses microbiome research from species-level 
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diversity to the identification of core functional traits that drive ecosystem stability and host 
interactions. In this context, the widespread functional redundancy among microbes supports a 
strategic approach to synthetic microbiome design. Instead of replicating entire natural communities, 
researchers aim to construct minimal microbial consortia that encompass essential functional roles. 
This approach has already shown success in various domains, such as enhancing plant–microbe 
interactions (Gonçalves et al., 2023) and developing rationally designed microbiome therapeutics to 
prevent and treat chronic immune-mediated colitis in a humanized T cell-mediated mouse model 
(van der Lelie et al., 2021). 

Given the complexity of host-microbiome interactions, there is no straightforward answer 
as to whether natural or synthetic microbiomes are superior for treating RTID. However, as our 
understanding of microbiome dynamics, interspecies interactions, and host responses 
deepens, advancements in synthetic microbiome design may enable the precise engineering 
of microbial communities with optimized therapeutic potential (Shetty et al., 2022). The ability 
to strictly control composition, dosing, and application protocols may ultimately enhance the 
safety and reproducibility of synthetic microbiomes, potentially tipping the balance in favour 
of their use in future therapeutic applications. 

Conclusion and future perspectives 

The management of RTID in domestic animals is at a crucial turning point, where the limitations 
of traditional antibiotics meet the growing potential of therapies based on microbial ecology. While 
conventional treatments have focused on eliminating pathogens, this review highlights the need to 
rethink treatment strategies by considering the role of beneficial microbes and ecological balance. 
The microbiome of the reproductive tract—a complex mix of host immunity, microbial diversity, and 
environmental factors—holds great promise for treatments that restore health rather than disrupt it. 
New approaches, such as transplanting beneficial microbes or creating synthetic microbial 
consortiums, challenge the old idea of seeing microbes only as “pathogens” or “good bacteria.” 
Instead, they encourage a more complete view of microbial networks in the body. However, this path 
forward is complicated. Differences across species, such as the short oestrus cycles in cows and the 
long periods of reproductive inactivity in dogs, require tailored solutions that consider each species’ 
unique anatomy, hormones, and immune systems. Additionally, translating research from animal 
models to larger species or pets raises practical and ethical challenges. Potential risks, such as 
unintended changes to the microbiome, gene transfer, or immune overreaction, stress the need for 
careful, species-specific safety measures. Future research must shift from simply cataloguing 
microbes to understanding how they interact, how they affect the immune system, and how they help 
maintain a healthy reproductive environment. Collaboration among microbiologists, veterinarians, 
and bioengineers will be key in developing precise treatments, while regulatory bodies must adapt to 
the new challenges posed by living biologics. Ultimately, moving from antibiotic-based treatments to 
microbiome-focused strategies requires a shift in how we define success—not just the absence of 
harmful pathogens, but the restoration of a healthy, balanced ecosystem. Although this transition is 
ambitious, it supports broader goals of reducing antimicrobial resistance and promoting sustainable 
agriculture. By embracing these innovations and understanding the delicate balance of ecosystems, 
veterinary medicine can lead the way in creating treatments that protect animal health, improve food 
security, and address the growing global crisis of antimicrobial resistance. 
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