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Abstract

This study aimed to establish in vitro culture conditions for inducing ovulation in lambari (Astyanax altipa-
ranae). All fish received a priming dose of either 0.6 mg/kg or 100 IU hCG/kg (human chorionic gonadotro-
pin) in vivo. In experiment 1, 0.6 mg and 5.4 mg of carp pituitary extract (CPE)/ kg of ovarian fragment were 
tested as resolving doses. In experiment 2, prostaglandin F2α (PGF2α) analogue at 100 ng/mL was added to 
5.4 mg CPE/kg as the resolving dose. Since ovulation did not occur, in experiment 3 and 4, we compared 
diverse forms of obtaining follicles, comparing manual follicle dissociation and collagenase at 100, 200, and 
400 CDU/mL. Additionally, in experiment 4, the resolving dose of CPE and hCG was replaced by 1 µg/mL 
17α,20β-dihydroxy-4-pregnen-3-one (DHP). Ovulation was successful only in Experiment 4, using mechani-
cally dissociated follicles with a priming dose of either CPE or hCG and 1 µg/mL DHP as the resolving dose. 
Key findings include that 5% CO2 is unnecessary, mechanical dissociation of ovarian fragments is optimal, 
a priming dose of CPE or hCG is required, and DHP at 1 µg/mL is effective. These results establish a stan-
dardized protocol for in vitro ovulation induction in A. altiparanae, offering a valuable tool to study ovarian 
function and spawning failure in tropical species.

Keywords: fish ovulation, spawning induction, DHP, PGF2alpha, pituitary extracts.

Introduction

Spawning failures affect many species worldwide, leading to significant losses in aquaculture 
(Mylonas et al., 2010). One key advantage of in vitro studies is the ability to efficiently test a wide 
range of hormone types and doses in a short period. These systems enable researchers to gather 
data on a smaller, controlled scale (i.e., in vitro), reducing the need for live fish and minimizing 
hormone use. The direct application of hormonal agents in vitro cultures, which influence final oocyte 
maturation (FOM) and ovulation, has been widely used and has contributed to the development 
of effective protocols for various species produced globally (Jalabert and Szöllösi, 1975; Goetz and 
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Theofan, 1979; Hagiwara et al., 2014; Tang et al., 2016, 2017). However, such approaches remain 
largely unexplored for native Latin American (LA) species. For lambari (Astyanax altiparanae), a small 
species important in aquaculture, especially as bait, and one for which the spawning rate requires 
enhancement (Roza de Abreu et al., 2021, 2022; Ariki et al., 2023), in vitro studies offer a valuable 
opportunity to test various hormones while reducing the need for euthanizing large numbers of 
individuals.

In recent years, we have demonstrated that a common issue in hypophysation processes 
is the successful resumption of meiosis, evidenced by germinal vesicle breakdown (GVBD) and 
oocyte maturation, but with no subsequent ovulation. GVBD oocytes often remain in the ovaries, a 
problematic phenomenon observed in species such as pacu (Piaractus mesopotamicus) (Criscuolo-
Urbinati et al., 2012; Kuradomi and Batlouni, 2018; Sato et al., 2021 and 2023), matrinxã (Brycon 
amazonicus) (Hainfellner et al., 2012), piau três pintas (Leporinus fridrici) (Souza et al., 2020), piauçu 
(Leporinus macrocephalus) (Pereira et al., 2018), and lambari (Astyanax altiparanae) (Roza de Abreu et al., 
2021, 2022; Ariki et al., 2023).

Ovulation, defined as the rupture of the ovarian follicle and release of a mature oocyte into the 
ovarian ducts (Jalabert, 2005), is mediated by luteinizing hormone (LH), which regulates the expression 
of nuclear progesterone receptors (nPR) and prostaglandin receptors (ptger4b) (Tang et al., 2016, 
2017). Prostaglandins play a critical role in ovulation in fish (Hagiwara et al., 2020), and their synthesis 
occurs during both natural and induced ovulation in non-mammalian vertebrates (Takahashi et al., 
2013). Much of the understanding of their hormonal function has been derived from studies about 
hormonal function comes from studies on species like carp (Jalabert et al., 1977; Levavi-Zermonsky 
and Yaron, 1986), trout (Bobe et al., 2006), and yellow perch (El Mohajer et al., 2021).

Based on this knowledge, we proposed modifying the conventional hypophysation protocol by 
incorporating prostaglandin F2α (PGF2α), a potent inducer of follicle rupture (review in Batlouni et al., 
2024). This revised protocol proved effective in pacu (Criscuolo-Urbinati et al., 2012) and holds 
potential for application for use in other species (ongoing studies). However, subsequent studies 
showed that PGF2α levels alone did not fully account for spawning failures in LA migratory species 
(Kuradomi and Batlouni, 2018; Sato et al., 2023), suggesting the need for further exploration of the 
mechanisms of actions and effective doses of gonadotropins, steroids, prostaglandins and other 
substances such as melatonin and cortisol in vitro.

The mechanisms underlying FOM and ovulation in native LA fish, such as lambari, remain largely 
unknown. Classical in vitro studies, conducted primarily on species from the Northern Hemisphere 
(Joy and Singh, 2013; Kagawa et al., 2013) and experimental model species (Lister and Van Der 
Kraak, 2009; Knight and Van Der Kraak, 2015), have shown that substances involved in FOM and 
ovulation exhibit varying efficacy mechanism of action across species. This body research has been 
critical for refining hormonal induction protocols for those species. Since the 1970s, studies have 
been developed in diverse fish species European (Jalabert et al., 1977; Jalabert and Szöllösi, 1975; 
Fujimori et al., 2011; Hagiwara et al., 2014; Tang et al., 2016, 2017) have used in vitro systems to 
investigate ovulation failures and the associated mechanisms. Through these investigations, we 
seek to provide new insights into the hormonal mechanisms regulating ovulation in this species.

Methods

Preparation for In vitro experimentation and culture conditions

Experimental design

Experiment 1

The objective of Experiment 1 was to establish baseline conditions for culturing A. altiparanae 
ovarian follicles and to evaluate the induction of FOM and ovulation using protocols adapted 
from other species. To this end, an initial priming dose was administered in vivo to ensure the fish 
acquired oocyte maturational competence (Patino and Thomas, 1990), and subsequent resolving 
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doses were applied in vitro. Previous in vivo studies on A. altiparanae have shown that while priming 
doses do not induce germinal vesicle breakdown (GVBD) in vivo, they are essential for oocytes to 
acquire maturational competence (Roza de Abreu et al., 2021, 2022; Ariki et al., 2023).

In vivo part of the experiment

Three A. altiparanae females were selected based on external characteristics such as rounded 
bellies and reddish, prominent urogenital papillae (Lira et al., 2018). All females (n=3) were treated 
with in vivo priming injection of carp pituitary extract (CPE) at doses of 0.6 mg/kg body weight.

In vitro part of the experiment

Five hours after the priming dose, the females were euthanized, and their ovaries were placed 
in Hank’s balanced salt solution (HBSS) (Vitrocell Embriolife H0345), approximately 25 mL per 
dish/ovary. The ovaries were rinsed multiple times to remove blood and debris using sterile 
disposable pipettes. Nine ovarian fragments (approximately 0.1 g each) were collected from 
each female, yielding a total of 27 fragments, which were individually placed in a sterile, three-
compartment Petri dish. Each fragment was placed in an experimental unit (plate compartment) 
containing 5 mL of medium with the corresponding diluted treatment.

Inside a laminar flow cabinet, the ovarian fragments underwent mild mechanical disintegration 
by repeatedly aspirating them with a sterile pipette. The HBSS was then replaced with Leibovitz 
L-15 culture medium (Vitrocell Embriolife L0131) supplemented with gentamicin (0.1 g/L, Sigma 
BP 918-1). The ovarian fragments were then randomly distributed into three in vitro treatments, 
as described below and in Figure 1A:

•	 Control (C): After receiving an in vivo dose of 0.6 mg/kg CPE, the ovarian fragments were 
cultured in L-15 medium only.

•	 Treatment 1 (T1): Following the in vivo priming dose (0.6 mg/kg CPE), fragments received 
an additional 0.6 mg/kg CPE in vitro (the mass of the fragment was considered for the 
calculation).

•	 Treatment 2 (T2): After the in vivo priming dose (0.6 mg/kg CPE), fragments received a higher 
in vitro dose of 5.4 mg/kg CPE.

After overnight incubation (12 hours) in the microprocessor CO2 incubator (5% CO2) at a 
temperature of 26–28ºC, the fragments were separated for the following morning for evaluation.

Follicles of all replicates were removed from the culture medium and subjected to analysis 
with Serra’s Liquid, which allows the presence and position of the nucleus to be visualized. The 
presence of oocytes without a nucleus, with an eccentric nucleus and with a central nucleus 
was observed. Part of oocytes were separated for the for histological analysis to compare with 
stereoscopic evaluation

Experiment 2

This experiment followed the same protocol as Experiment 1, but with the addition of 
cloprostenol (a synthetic analogue of PGF2α) in vitro, a well-known potent inducer of ovulation 
in fish (Jalabert and Szöllösi, 1975). Based on in vivo studies (Criscuolo-Urbinati et al., 2012), 
100 ng/mL of PGF2α was added to Treatment 2. The experimental groups were as follows, as 
described below and in Figure 1B:

•	 Control (C): In vivo priming with 0.6 mg/kg CPE and in vitro culture with L-15 medium only.

•	 Treatment 1 (T1): In vivo priming with 0.6 mg/kg CPE and in vitro treatment with 5.4 mg/kg CPE.
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•	 Treatment 2 (T2): In vivo priming with 0.6 mg/kg CPE and in vitro treatment with 5.4 mg/kg 
CPE plus 100 ng/ml PGF2α.

Figure 1. Experimental design of experiments 1 – 4. A) Experiment 1: 1st in vivo dose with 0.6mg/kg 
CPE and after 12 hours, in vitro incubation in CO2. C: control; T1: treatment 1; T2: treatment 2; B) 
Experiment 2: 1st in vivo dose with 0.6mg/kg CPE and after 12 hours, in vitro incubation in CO2; C: 

control; T1: Treatment 1; T2: Treatment 2; C) Experiment 3: Test to identify the best way to dissoci-
ate the ovarian fragments. C: Control (intact ovarian fragments); MD: Mechanical follicle isolation; 
C100: 100 CDU/mL Collagenase 100 CDU/mL in L-15 medium; C200: 200 CDU/mL Collagenase 100 
CDU/mL in L-15 medium; C400: 400 CDU/mL Collagenase 100 CDU/mL in L-15 medium; D) Experi-
ment 4: At the in vivo dose, CPE and hCG were tested and all were incubated in vitro with DHP. FD: 
fragment with in vitro incubation with DHP; FED: Fragment with 1st in vivo dose with EBHC and in 

vitro incubation with DHP; FHD: Fragment with 1st in vivo dose with hCG and in vitro incubation with 
DHP; DMD: Mechanical digestion of follicles with in vitro incubation with DHP; DMED: Mechanical 
digestion of follicles with 1st in vivo dose with EBHC and in vitro incubation with DHP; DMHD: Me-
chanical digestion of follicles with 1st in vivo dose with hCG and in vitro incubation with DHP; DCD: 
Collagenase digestion of follicles with in vitro incubation with DHP; DCED: Collagenase digestion of 
follicles with 1st in vivo dose with EBHC and in vitro incubation with DHP; DCHD: Collagenase diges-
tion of follicles with 1st dose in vivo with hCG and in vitro incubation with DHP. Legend: CPE: Carp 

pituitary extract.
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Experiment 3

Due to the lack of clear responses in Experiments 1 and 2, structural modifications 
were implemented in Experiment 3. CO2 was removed from the incubator based on studies 
suggesting that higher pH levels in the culture medium are beneficial (Welch et al., 2017). 
Additionally, collagenase (Type II, Sigma-Aldrich) was introduced to aid in follicle isolation 
(Lacerda et al., 2018), and Trypan Blue staining was used to assess oocyte viability. The 
experimental design consisted of five groups, each with three replicates, as described 
below and in Figure 1C:

•	 Control (C): No manipulation (intact 0.1 g ovarian fragments).

•	 Treatment 1 (MD): Mechanical follicle isolation.

•	 Treatment 2 (C100): 100 CDU/mL Collagenase 100 CDU/mL in L-15 medium.

•	 Treatment 3 (C200): 200 CDU/mL Collagenase 100 CDU/mL in L-15 medium.

•	 Treatment 4 (C400): 400 CDU/mL Collagenase 100 CDU/mL in L-15 medium.

After 30 minutes of mechanical or enzymatic treatment, follicles were evaluated for viability 
(blue for dead, bright for live) and nuclear status.

Experiment 4

Considering results obtained in Experiment 3, the experiment 4 tested new ovarian 
fragment preparation methods, including mechanical and enzymatic incubation without 
CO2. Additionally, human chorionic gonadotropin (hCG) – Sigma-Aldrich, at 500 IU/kg, was 
introduced as priming dose. For resolving doses, 1 µg/mL 17α,20β-dihydroxy-4-pregnen-
3-one (DHP- Sigma-Aldrich) was used for inducing FOM and ovulation induction, replacing 
pituitaries extracts.

Ovarian fragments from three mature females (3 females and 9 treatments; n=27 fragments) 
were randomly assigned to different treatments, as outlined in Figure 1D. Twelve hours after the 
in vivo priming doses, ovarian fragments were subjected to in vitro culture conditions, including 
enzymatic digestion with 200 CDU of collagenase/mL for 30 minutes and incubation in L-15 
medium, as described in Figure 1D.

All treatments began at 9 p.m., when the in vivo priming dose (CPE or hCG) was administered. 
The following day, 12 hours after the start of the experiment, the in vitro phase was initiated. 
For this, the euthanized females and, after the abdominal incision, 0.2 g ovarian fragments 
were obtuse and submerged in plastic petri dishes. Each plate initially contains 3 mL of culture 
medium L-15 (L-15 100%) (L0131, Vitrocell).

Nine experimental treatments were established by combining in vivo hormonal protocols 
and in vitro culture strategies:

•	 DMD: (Mechanical dissociation) No in vivo hormonal induction. In vitro incubation with DHP.

•	 DMED: (Mechanical dissociation) In vivo priming dose (0.6 mg/kg CPE). In vitro incubation 
with DHP.

•	 DMHD: (Mechanical dissociation) In vivo priming dose (500 IU/kg hCG). In vitro incubation 
with DHP.

•	 FD: (Fragment) No in vivo hormonal induction. In vitro incubation with DHP.
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•	 FED: (Fragment) In vivo priming dose (0.6 mg/kg CPE). In vitro incubation with DHP.

•	 FHD: (Fragment) In vivo priming dose (500 IU/kg hCG). In vitro incubation with DHP.

•	 DCD: (Collagenase digestion) No in vivo hormonal induction. In vitro incubation with DHP.

•	 DCED: (Collagenase digestion) In vivo priming dose (0.6 mg/kg CPE). In vitro incubation with 
DHP.

•	 DCHD: (Collagenase digestion) In vivo priming dose (500 IU/kg hCG). In vitro incubation with 
DHP.

For mechanical dissociation treatments (DMD, DMED, DMHD), ovarian fragments 
were manually dissociated in L-15 medium. In whole fragment treatments (FD, FED, FHD), 
intact ovarian fragment (0.1 g) was maintained in the medium without dissociation. For 
enzymatic digestion treatments (DCD, DCED, DCHD), ovarian fragments were incubated 
in L-15 containing 200 UCI/mL type II collagenase on a shaker (27 rpm) for 30 minutes, 
followed by addition of a stop solution (10% BSA in L-15) to halt enzymatic activity. In all 
treatments, the DHP (1 µg/mL) was added to the plates. The plates were then placed back 
on the shaker, maintaining a constant stirring at 27 rpm for 7 hours. After this period, all 
treatments were evaluated for the success of ovulation induction by counting different types 
of oocytes: without nucleus, with eccentric nucleus and GVBD. The oocytes without nucleus 
were considered ovulated, following widely used literature for these analyses (Jalabert and 
Szöllösi, 1975; Jalabert et al., 1977).

Ethics

All procedures were conducted at the Fish Reproduction Laboratory (CAUNESP), located in 
Jaboticabal, SP, Brazil, and were approved by the UNESP Animal Use Ethics Committee under 
protocol no. 1578/21.

Animals

The specimens used in this study were adult A. altiparanae obtained from captive breeding 
at the Reproduction Laboratory, CAUNESP, Jaboticabal (21º 15’ 17” S, 48º 19’ 20” W). The fish 
were housed in 200m2 earthen ponds with a stocking density of 50 fish/m3 and a water flow 
rate of 15-20 L/min. They were fed a commercial diet containing 36% crude protein twice daily 
until apparent satiety.

Results

Experiment 1

In the general analysis, all culture plates showed intense acidification of the medium, despite 
being contamination-free (Figure 2A). Mechanical digestion using pipettes did not dissociate 
the fragments adequately, preventing clear visualization of individual oocytes necessary for 
nuclear position counting (Figure 2B). However, all fragments contained the three oocyte types: 
central nucleus (CN), eccentric nucleus (EN), and absent nucleus (AN) (Figure 2B). The images 
presented are illustrative, as similar patterns were observed across all groups, with minor 
differences between treatments, but these differences could not be quantitatively analyzed due 
to the technical challenge of follicle separation. Histological evaluation confirmed the presence 
of these oocyte types (Figure 3).
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Figure 2. Experiment 1. A) Tripartite plate with ovary fragments partially dissociated at the end of in vi-
tro step of experiment 1; the yellowish culture medium indicates high acidification; B) Cluster of follicles 

with partial dissociation from treatment T1 (priming dose (0.6 mg/kg CPE) in vivo and 0.6 mg/kg carp 
pituitary extract in vitro. All replicas from all treatments showed the same aspect. The Serra liquid tech-
nique allowed the identification of the predominance of oocytes with a central nucleus (CN), as well as 
the presence of eccentric nucleus (EN) and with an absent nucleus (AN). Observe that the overlapping 

of oocytes does not allow the visualization of many of them. Scale bar: 2mm.

Figure 3. Illustrative images of different treatments of experiment 1. Histological evaluation of follicles at the 
end of experiment showing the similar distribution of central nucleus (cn), eccentric nucleus (en), and absent 
nucleus (an) oocytes, among control and treatments. A-C: Control; D-F: Treatment 1 (0.6 mg/kg CPE in vitro); 

G-I: Treatment 2 (in vitro dose of 6 mg/kg CPE). Arrow: pre-vitellogenic oocyte. Scale bar: 200μm.

Experiment 2

As in Experiment 1, no contamination was observed, but acidification of the culture medium 
persisted (data not shown). Dissociation of fragments remained inadequate (Figure 4A), and 
despite introducing prostaglandin in one treatment, no differences in oocyte types were observed 
across treatments (Figure 4A-B). However, histological analysis revealed intact oocytes, including 
the theca and follicular layers, in all treatments (Figure 4C). Central, eccentric, and absent nuclei 
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oocytes were observed randomLy, with no clear treatment effects. The lack of dissociation of 
the fragments prevented the counts from being evaluated so that the different types of oocytes 
could be quantified and compared between treatments, which can be observed in Figure 4A.

Figure 4. Illustrative images of different treatments of experiment 2. A) Cluster of oocytes in Serra’s 
fluid, with inefficient cell separation. Observe that is possible to detect the presence of different type of 

oocytes; B) Through histological analysis, it is also possible to detect and confirm the random and similar 
presence of different types of oocytes in the different treatments and controls. Cn: central nuclei; ec: 
excentric nuclei; and an: absent nuclei; C) Intact follicular layers and theca in an oocyte with a central 

nucleus. Scale bar: A: 2mm; B-C: 200mm.

Experiment 3

Three concentrations of collagenase (100, 200, and 400 IU/mL) were tested (Figure 5). Higher 
concentrations, especially 400 IU/mL, resulted in a friable appearance of the follicles (Figure 5E), 
suggesting collagenase digestion disrupted follicular structure. Although most oocytes were not 
stained with Trypan Blue, indicating viability, the friability of follicles treated with collagenase 
made these treatments unsuitable (Figure 5A). Follicles disintegrated easily with light handling 
(Figure 5C-E). As discussed later, Trypan Blue may stain only the outer follicle layers without 
detecting oocyte viability. Cell survival rates are shown in Supplementary Figure 1.

Figure 5. Experiment 3. Evaluation of different types of ovarian follicle isolation. The blue color of some 
oocytes is due to the method of cell surveillance evaluation based on the use of Trypan blue. A) Control, no 
manipulation. Observe the presence of different oocyte types concerning the blue or bright color and that 
some oocytes are partially colored. In the same figure is possible to see that germinal vesicle can be central 
(cn), eccentric (en) or absent (an) and that due to coloration it can be bright (bn) or blue (bn); B) Mechanical 
dissociation of ovarian follicles. Observe that despite the regular aspect of cells, most cells have blue nuclei; 

C-E) Treatments with collagenase. Observe the irregular shape of cells, but despite that, most cells are 
bright. Treatment with 100 CDU/mL of collagenase type II; D) Treatment with 200 CDU/mL of collagenase 

type II; E) Treatment with 400 CDU/mL of collagenase type II. Scale bar: A: 2mm; B – E: 5mm.
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Experiment 4

In all groups treated with enzymatic digestion, including controls, post-digestion analysis 
yielded minimal cellular material, with most samples exhibiting extensive dissolution (data 
not shown). In the limited instances where follicles were successfully obtained, marked 
cellular disorganization and loss of cell viability were observed, similar to experiment 3. Whole 
ovarian fragments were used in some treatments, but this approach proved unsuccessful, as 
ovulation-inducing substances apparently could not penetrate the follicles to trigger meiosis and 
ovulation, as will be discussed (Figure 6A-C). In contrast, treatments using mechanical digestion 
achieved adequate follicle separation (Figure 6D-F). Notably, the use of DHP, as the resolving 
dose, specifically in mechanically isolated follicles, effectively induced ovulation, resulting in the 
release of homogeneous oocytes without germinal vesicles (Figure 6E-F).

Figure 6. Experiment 4. Obtaining in vitro ovulation with 1 μg/mL of 17α,20β-dihydroxy-4-pregnen-3-
one (DHP). General appearance of the follicles after the end of experiment 4 of this study. A) FD treat-
ment - Entire fragment, without hormonal induction in vivo, and incubation in vitro with 1 μg/mL DHP ; 

B) FED - Entire fragment with 1st dose in vivo with CPE and incubation with 1μg/mL DHP; C) FHD - Entire 
fragment with 1st dose in vivo with 500 UI/Kg hCG and incubation with 1μg/mL DHP; D) DMD - Follicles 
from a fish in which mechanical digestion, without hormonal induction in vivo and incubation in vitro 

with 1μg/mL DHP; E) DMED -Mechanical dissection, with 1st dose in vivo with CPE and incubation with 
1μg/mL DHP; F) DMHD - Mechanical digestion, with 1st dose in vivo with 500 UI/Kg hCG and incubation 
with 1μg/mL DHP. Cn: Central nucleus; ec: excentric nucleus; an: absent nucleus. Scale bar: A, B) 3mm; 

C, E) 2mm; D) 2,5mm; F) 1mm.

Discussion

In this study, we standardized the conditions for maintaining and inducing A. altiparanae 
ovarian follicles to ovulate in vitro across four consecutive experiments. To achieve this, we first 
applied a priming dose in vivo, as done in spawning induction protocols for this species (Roza de 
Abreu et al., 2021, 2022; Ariki et al., 2023). Previous research showed that A. altiparanae spawns 
more effectively when hypophysation doses are fractionated: the priming dose initiates oocyte 
maturational competence, while the resolving dose induces FOM and ovulation, but only if the 
priming dose has been administered first (Roza de Abreu et al., 2021, 2022; Ariki et al., 2023). 
With this in mind, we applied the priming dose in vivo following the methodology of Patiño 
and Thomas (1990) and subsequently administered the resolving dose in vitro. This procedure 
proved effective, as none of the control oocytes (which received only the priming dose in vivo and 
were maintained solely in culture medium in vitro) showed signs of GVBD or ovulation. Instead, 
control oocytes maintained a central nucleus without morphological changes throughout all 
experiments, confirming the protocol’s viability.
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Leibovitz’s L-15 medium was selected for follicle culture based on its widespread use in teleosts, 
including Danio rerio (Welch et al., 2017; Mello et al., 2023), Clarias gariepinus (Kitanović et al., 2024), 
Sebastes schlegelii (Guo et al., 2024), and Chaeno gobius annularis (Kim et al., 2023). Considering 
the variability in optimal culture conditions among species and methodologies (as reviewed by 
Hartshorne, 1997), we tested several key factors for A. altiparanae, including 5% CO2 incubation, 
ovarian tissue dissociation method (mechanical vs. enzymatic), and the use of intact ovarian 
fragments versus dissociated follicles. Cell incubators with 5% CO2 are commonly used in cell 
cultures to mimic physiological CO2 pressure and concentration levels in tissues, reducing the 
harmful effects of reactive oxygen species (reviewed in Keeley and Mann, 2019). However, in 
our initial experiments, CO2 incubator led to significant medium acidification. Discontinuing CO2 
resolved this issue, and in the fourth experiment, successful in vitro ovulation was achieved using 
1 µg/mL DHP without CO2, consistent with findings in zebrafish (Welch et al., 2017). Although 
it remains unclear whether acidification directly inhibited ovulation, reduced pH is known to 
impact in vitro ovulation processes in fish (Goetz and Nagahama, 1985), warranting further 
research into the optimal pH environment for A. altiparanae follicle incubation. While ovulation 
was achieved using L-15 medium at standard pH in our study, future studies should also define 
optimal CO2 and O2 levels,(reviewed in Samokhin et al., 2022), temperature, osmolarity, and 
pH conditions for the ovaries of this species to better simulate in vivo conditions (reviews in 
Hartshorne, 1997; Keeley and Mann, 2019).

In the second experiment, we introduced a treatment combining 100 ng/mL PGF2α with the 
CPE dose to simulate a well-established in vivo reproduction protocol (Criscuolo-Urbinati et al., 
2012; Sato et al., 2021). However, this approach also did not result in FOM or ovulation. Similar 
to the first experiment, we observed high acidification of the medium, and the results mirrored 
those of the control, with no ovulation achieved. These findings suggest that the extract dosage 
used in the first two experiments may warrant re-evaluation. Although the first and second 
experiments yielded similar (i.e., non-ovulatory) outcomes, the lack of successful ovulation 
does not imply that pituitary extracts are ineffective for in vitro ovulation in this species; rather, 
further optimization may be required.

Regarding pituitary extract dosages, when converting mg of CPE per kg of fragment to mg of 
CPE per mL of medium, the highest dose used in this study was 0.18 µg/mL CPE. In other species, 
higher doses of pituitary extracts have been effective for inducing in vitro hypophyseal activity. 
For instance, in Dicentrarchus labrax, researchers using CPE defined a “pituitary equivalent” (PE) 
as approximately 3 mg/mL of extract (1 PE/mL) (Sorbera et al., 1999). In their dose-response 
studies, a single dose ranging from 0.001 to 1 PE was effective in inducing ovulation, with 1 PE 
achieving nearly 90% oocyte maturation, while 0.001 PE was ineffective in triggering follicle 
maturation. Given that 1 PE corresponds to 3 mg/mL, this concentration is substantially higher 
than the 0.18 µg/mL dose used to mimic the resolving dose in lambari in our study. Similarly, in 
Siberian sturgeon follicles, the minimum effective dose of CPE to achieve 50% maturation was 
7.4 µg/mL (Goncharov et al., 2001), which is ten times higher than the maximum dose tested 
in our study. These comparisons highlight the significant variability in the potency of pituitary 
extracts across species, suggesting that dose optimization is species-specific for effective in 
vitro maturation.

When comparing different substances, both dosage and latency period must be considered. 
In this study, we applied the same experimental duration for treatments with both pituitary 
extracts and DHP, despite their distinct latency periods in vitro. Typically, gonadotropins require 
longer to induce ovulation than DHP. For example, in Discentraxus labrax, the latency period 
for exogenous gonadotropins and DHP was approximately 45 and 15 hours, respectively 
(Sorbera et al., 1999). In Siberian sturgeon, a 50% ovulation rate with pituitary extracts was 
observed after about 36-38 hours of incubation (Goncharov et al., 2001). In contrast, the present 
study evaluated the response to CPE only 7 hours post-dose, aligning with the species’ in vivo 
ovulation timeline (Roza de Abreu et al., 2025). Therefore, future studies should extend the 
incubation period to fully assess the ovulation-inducing effects of pituitary extracts in lambari, 
adjusting both dose and incubation time.
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This perspective is also relevant to the absence of ovulation observed with 100 ng/mL PGF2α 
in the third experiment. The concentration of PGF2α, derived from in vivo studies considering 
total body mass (Criscuolo-Urbinati et al., 2012), is relatively low for in vitro cultures. In fact, 
Jalabert and Szöllösi (1975) demonstrated that in vitro ovulation in trout could be achieved with 
PGF2α concentrations ranging from 1,000 to 5,000 ng/mL, which are 10 to 50 times higher than 
the dose used in our study. These findings strongly suggest that the dose of PGF2α employed 
in our experiment may have been insufficient to trigger ovulation, underscoring the need for 
dose optimization in in vitro protocols.

In the present study, Trypan Blue staining proved more effective for visualizing the outer 
follicular layers than for reliably assessing follicle viability, as staining was inconsistent and not 
clearly associated with oocyte death. Similar limitations were reported by Santos et al. (2017) 
in evaluate tambaqui follicle viability. By the fourth experiment, mechanical digestion was the 
most effective method for isolating lambari follicles. Notably, in this experiment, we observed 
promising signs of in vitro ovulation exclusively in treatments combining mechanical digestion 
with DHP. These results, helped confirm that the blue coloration of oocytes is not indicative of 
dead follicles. Although collagenase digestion produced morphologically brighter oocytes, it 
failed to yield viable follicles.

Given that DHP and other maturation-inducing steroids (MIS) typically induce FOM and 
ovulation more rapidly and effectively in vitro than gonadotropins or pituitary extracts (Jalabert 
and Szöllösi, 1975; Patiño and Thomas, 1990; Sorbera  et  al., 1999; Goncharov  et  al., 2001; 
Welch et al., 2017), we opted to replace CPE with 1 µg/mL DHP as the resolving dose in the 
fourth experiment. At this stage, improved experimental conditions were also established, 
opting to use DHP as an in vitro steroid inducer, similar to the application of prostaglandins 
in Anguilla japonica (Kagawa et al., 2003) or DHP in Perca fluviatilis (El Mohajer et al., 2021). 
Our study corroborates previous findings by Jesus et al. (2017), confirming DHP as a MIS for 
lambari, though the involvement of other MIS cannot be ruled out. DHP is widely recognized 
as a key MIS for many fish species (Takahashi et al., 2019), but additional investigations are 
needed to fully elucidate the specific MIS involved in lambari oocyte maturation. Based on our 
findings, mechanical digestion of ovarian fragments combined with an in vivo priming dose and 
in vitro DHP application as a resolving dose effectively induces in vitro ovulation. These findings 
provide a foundation for optimizing in vitro ovulation protocols in lambari and offer a potential 
framework for similar advancements in other fish species.

Conclusion

This study established a viable protocol to induce ovulation in vitro in A. altiparanae, 
highlighting the role of DHP and the efficiency of mechanical digestion. Future studies should 
focus on optimizing hormone doses and incubation parameters to further enhance the method’s 
efficacy and applicability.
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Supplementary Material

Supplementary material accompanies this paper.

Supplementary Figure 1 - Experiment 3. Survival rate of follicles analyzed using Trypan blue.


