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Abstract 
Sperm cells rely on different substrates to fulfil thei energy demand for different functions and diverse 
moments of their life. Species specific mechanism involve both energy substrate transport and their 
utilization: hexose transporters, a protein family of facilitative passive transporters of glucose and other 
hexose, have been identified in spermatozoa of different species and, within the species, their localization 
has been identified and, in some cases, linked to specific glycilitic enzyme presence. The catabolism of 
hexose sources for energy purposes has been studied in various species, and recent advances has been 
made in the knowledge of metabolic strategies of sperm cells. In particular, the importance of aerobic 
metabolism has been defined and described in horse, boar and even mouse spermatozoa; bull sperm 
cells demonstrate to have a good adaptability and capacity to switch between glycolysis and oxidative 
phosphorylation; finally, dog sperm cells have been demonstrated to have a great plasticity in energy 
metabolism management, being also able to activate the anabolic pathway of glycogen syntesis. 

In conclusion, the study of energy management and mitochondrial function in spermatozoa of different 
specie furnishes important base knowledge to define new media for preservation as well as newbases for 
reproductive biotechnologies. 
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Introduction 

Spermatozoa are highly specialized cells that are aimed at delivering the male DNA into the 
new generation subjects. To do so, after being produced by the testicle, matured and stored in 
the epididymis, they are released in the female genital tract, where they begin the long journey 
to the female gamete in order to reach it and act for the fertilization process. 

In mammalian sperm, between ejaculation and fertilization, there can also be another 
important step in sperm life, that is not occurring in natural breeding animals, but usually 
occurs when artificial reproduction techniques are used: conservation. 

Irrespective of the imminent fate of sperm cells, it should be stated that they need some 
energy substrate to adapt to the environment, maintaining homeostasis and movement. 

This review aims at pointing out the most recent knowledge on sperm metabolism in terms 
of fuelling supply, utilization of substrates and metabolic strategies, and balance between 
anaerobic and aerobic pathways. 

Most of the knowledge on different mammalian species has been presented and reviewed 
by outstanding research groups and colleagues during the last years (Boguenet et al., 2021; 
Moraes and Meyers, 2018; Peña et al., 2022; Rodriguez-Gil, 2006; Rodríguez-Gil and Bonet, 
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2016; Varner et al., 2015) and we also focused on some specific aspects of sperm metabolism 
(Bucci et al., 2011). We therefore invite the reader to refer also to those review papers to widen 
the knowledge on the theme. In this review, we will also present some unpublished data from 
our labs regarding the balance and equilibrium between anaerobic and oxidative metabolism. 

Energy sources for sperm cells. Not only sugar 

An interesting paper by Storey (2008) focused on the regulatory and fuelling role of sugars 
in mammalian sperm life and activity (Storey, 2008). The author thoroughly revised a large 
number of studies dating back to the 1940s, in which it was first studied and reported how 
important and precious sugar fuelling was for sperm function. 

Of particular interest, among the first studies on sperm metabolism, were the researches 
reported in Storey’s review by Lardy and Philips and co-workers, as well as the impressive work 
published by Mann (for reviewing and references see (Storey, 2008)); those first experimental 
work were aimed at defining the role of fuelling sugars for maintaining the most evident sperm 
function, motility, as well as to maintain sperm fertilizing ability. From that point on, a large 
interest was given to sugars and their role in sperm preservation under liquid storage 
conditions. It is well known that different species may rely on hexoses for their metabolism 
(Fernández-Novell et al., 2004; Medrano et al., 2005; Peña et al., 2022). Nevetheless, other 
mechanisms of fuelling have been demonstrated over time (Brooks and Mann, 1972, 1973; 
Hutson et al., 1977; Medrano et al., 2006a) in different species, thus demonstrating that the 
direct impact of mitochondrial metabolization of energy sources could play a major role in 
energy obtainment from different species. 

The uptake of hexose monosaccharides is exerted by different members of a protein family 
of carriers and these comprises the so called GLUTs (glucose transporters) which have different 
specificities for the substrates hexoses (Bucci et al., 2011): CLASS I transporters, (GLUT 1, 2, 3, 
4, and 14) are mainly glucose transporters (excepting for GLUT2, that transport also fructose); 
CLASS II transporters (Glut 5, 7, 9, 11), fructose or double affinity transporters; CLASS III 
transporters (GLUT 6, 8, 10, 12 and HMIT), with hight affinity for glucose and a different 
structure if compared with CLASS I and II ones. 

These proteins have been studied in sperm from different species (Angulo et al., 1998; 
Bucci et al., 2010a, b, 2011; Sung and Moley, 2007) such as human, rat, and bull sperm cells. 
GLUTs 1, 2, 3, 4, and 5 (Angulo et al., 1998) show species specific localization within sperm head 
and tail, and each GLUT shows a different distribution within the same species. The 
immunocytochemistry results were also validated with Western Blot analysis. Our group 
studied GLUT 1, 2, 3, 5 in horse, donkey, boar and dog sperm cells (Bucci et al., 2010a), defining, 
with the same experimental design as Angulo, the presence and abundance of glucose 
transporters (immunocytochemistry and western blotting). Finally, GLUT 8 and 9 were studied 
in mouse testis and mature spermatozoa (Sung and Moley, 2007) 

Interesting studies have regarded the relationship between GLUTs activity and the 
metabolism of sperm cells: in the early 2000s, Rigau and colleagues showed that metabolic 
plasticity of dog spermatozoa could be related to GLUTs localization (Fernández-Novell et al., 
2004; Rigau et al., 2001, 2002); similarly, it was demonstrated that GLUT 3 co-localizes with 
Hexokinase I in pig spermatozoa(Medrano et al., 2006b), and this could strictly link the activity 
of the transporter and the enzymes responsible for the metabolization of the transported 
substance. 

Finally, we demonstrated that GLUT 3 and 5 in dog spermatozoa (Bucci et al., 2010a) 
undergo relocalization after incubation under capacitating conditions; again, a swift in 
metabolic rate of the sperm cells induces a modification of the localization of the suppliers of 
energy substrates. 

Monocarboxilate transporters (MCTs) have been recently described in spermatozoa, 
specifically MCT1 has been identified in the sperm head; these transporters are responsible 
for transport of pyruvate/lactate and their presence could play a promising role in the 
production of next-generation sperm preservation extenders (Peña et al., 2022). 
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Different strategies for energy obtainment and mitochondria 

Since a long time, it was recognised that spermatozoa from different species have different 
metabolic strategies to obtain energy for their metabolic activity (Bucci et al., 2011; Gibb and 
Aitken, 2016; Peña et al., 2022; Rodriguez-Gil, 2006; Rodríguez-Gil and Bonet, 2016; 
Varner et al., 2015); this section will furnish a brief description of the different energy 
obtainment strategies exerted by different species to sustain sperm function. 

It is noteworthy to point out that sperm cells may use preferably the anaerobic pathway 
(glycolysis) or the aerobic one (oxidative phosphorylation) to obtain energy (see Figure 1). 

 
Figure 1. Representation of the anaerobic and aerobic energy obtainment pathways. 

Boar spermatozoa 

Boar sperm cells are recognized as a typical phenotype of slow, short-living cells 
(Marin et al., 2003; Rodriguez-Gil, 2006); this fact is related to the physiology of reproduction in 
this species, in which the female, thus having a long lasting estrous (2-4 days) has a receptibility 
peak in the middle 24 hours of the estrous period; it is reported that sperm cells in the female 
genital tract could live no more than 18 hours (Johnson et al., 2000). 

Studies on metabolism of boar sperm cells defined these cells as primarily glycolytic, showing up 
to 95% of anaerobic metabolism, as revealed by mass spectrometry studies (Marin et al., 2003). In 
addition, the presence of hexokinase and the metabolizing rate of glucose have led the researcher to 
sustain this dogma (Fernández-Novell et al., 2004; Medrano et al., 2005, 2006b). Anyway, the 
intervention of mitochondria in boar sperm cells metabolism cannot be discarded, as different 
studies have shown the presence of an active metabolism of mitochondrial substrates (Brooks and 
Mann, 1973; Medrano et al., 2006a); in addition, a recent study from our laboratories, carried out 
using different specific inhibitors of the electron transfer chain, demonstrated that boar spermatozoa 
have an active mitochondrial metabolism and that mitochondria preferably rely on complex I instead 
of complex II to oxidize substrates (Nesci et al., 2020). This finding is opening a new interest on boar 
sperm mitochondria and their actual role in energy supply. 

Dog spermatozoa 

Dog spermatozoa are retained as the opposite phenotype of boar sperm: they are fast cells, 
with a great surviving capacity in the female genital tract (more than 10 days). Again, this 
situation mirrors the reproductive physiology demands of this species, in which the bitch has 
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a long lasting estrous (till 9 days) and sexual receptivity is not always synchronous with 
ovulation (up to 11 days from ejaculation to fertilization) (Foutouhi and Meyers, 2022). 
Therefore, sperm cells from the dog must have the possibility to remain alive and functional 
for longer time, and evolute different metabolic strategies: high capacity to metabolize glucose, 
(Fernández-Novell et al., 2004), metabolic plasticity (Bucci et al., 2010a; Rigau et al., 2001, 
2002), ability to activate anabolic glycogen synthesis pathways (Ballester et al., 2000) and to 
further use glycogen for highly demanding functions (Albarracín et al., 2004). Meyers and 
colleagues (Foutouhi and Meyers, 2022) report that canine spermatozoa demonstrated to have 
a high capacity to increase their oxidative metabolism when properly treated and that, in case 
of disruption of oxidative metabolism, they can in a certain way supply with hexose utilization. 

Horse spermatozoa 

Horse spermatozoa are mostly oxidative cells: it is reported that their metabolic strategy could be 
defined as “live fast, dye young”. Several researches from the group of Fernando Peña (Davila et al., 
2015, 2016; González-Fernández et al., 2009; Ortiz-Rodriguez et al., 2021; Peña et al., 2022, 2015; 
Plaza Dávila et al., 2015) have clearly demonstrated that active and fit mitochondria are needed for 
horse sperm functioning in the proper way; in particular, the approach chosen in these studies, 
(recently applied also in our labs to better delineate the relationship between sperm motility, ROS 
production and mitochondrial function (Giaretta et al., 2022)) was selective inhibition of electron 
transfer chain (ETC) of respiratory complexes to determine their role in ETC function and ROS 
production. Other studies, by Meyers and colleagues (Darr et al., 2016a, b; Foutouhi and Meyers, 
2022; Meyers et al., 2019; Moraes and Meyers, 2018) deepened the study of the role of mitochondria 
in stallion semen function, using different techniques to determine Oxygen Consumption Rate (OCR) 
and ATP production. Finally, the group of Zamira Gibb furnished some very interesting clues on 
mitochondria potentiality (Gibb et al., 2014, 2015; Gibb and Aitken, 2016; Swegen et al., 2016; 
Varner et al., 2015). These intense studies have demonstrated that an impairment of the 
mitochondrial function is strongly deleterious for horse sperm function and that the key point to 
support a good functionality and survival of horse sperm cells is the presence of intact mitochondria. 

Bull spermatozoa 

Bull spermatozoa have been the first ones to be studied, as reported in the milestone 
review by Storey (Storey, 2008). After a relatively long period in which sperm metabolism was 
not the center of the studies in bull semen, new interest was focused on these features. 
(Bulkeley et al., 2021; Chatterjee et al., 2001; Contri et al., 2010; Moraes et al., 2021; Thys et al., 
2009). Bull sperm cells are probably the most widely used in AI techniques all over the world 
and, generally speaking, they are easily cryopreserved; as a consequence, we register a great 
advance in the application of AI techniques in spite of basic research on metabolic features. 

Bull spermatozoa can rely both on glycolysis and oxidative phosphorylation pathways: in 
normal conditions the two pathways play an integrated role as expected from somatic cells 
metabolism (Vishwanath and Shannon, 2000). In these conditions, mitochondria are “coupled” and 
their functionality guarantees a good function of the metabolic machinery (Bulkeley et al., 2021; 
Moraes et al., 2021) and sustains motility. Anyway, after cryopreservation, bull sperm mitochondria 
do not work properly, probably because of cryo-injuries, as we demonstrated in recent research 
from our labs (Algieri et al., 2022), in which we showed that bull frozen sperm mitochondria are 
uncoupled, as mitochondrial respiration does not support the ATP synthesis, in contrast with what 
was observed by other Authors in freshly ejaculated semen (Bulkeley et al., 2021). In another 
research (under review) we studied the action of different ETC inhibitors on bull frozen sperm cells. 
The results clearly showed that these cells are more resistant than horse ones to ETC inhibition, 
and that only inhibition of complex III is able to significantly decrease mitochondrial membrane 
potential and motility (as observed also in fresh semen) (Bulkeley et al., 2021). These findings 
together seem to contrast with the fact that frozen semen from bull have overall a good fertilizing 
ability; we believe that in case of oxidative phosphorylation breakdown, the glycolytic pathway is 
able to sustain motility and sperm cell homeostasis. 
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Mouse spermatozoa 

Mouse sperm cells were studied under different aspects, one of these was sperm 
metabolism, and they were considered for a long time strictly glycolytic cells (Ford, 2006; 
Krisfalusi et al., 2006; Mukai and Okuno, 2004), as motility is strictly related to an active 
glycolytic pathway within the cell. After almost a decade from these studies, some insights were 
focused also in mouse sperm mitochondrial activity (Tourmente et al., 2015), thus 
demonstrating that mitochondria may have a role in energy production; a recent work by the 
same Authors (Tourmente et al., 2022), applying novel techniques already used in bull, boar 
and canine spermatozoa(Foutouhi and Meyers, 2022), demonstrated that mitochondrial ATP 
production plays a pivotal role in capacitation process in mouse spermatozoa, which shift their 
metabolism from a highly glycolytic one toward an oxidative one. As a technical note, perhaps 
some investigation on possible differences in sperm metabolism of the most used mouse 
strains could reveal the best model for translational reseach. 

Concluding remarks and future perspectives 

The study of sperm metabolism has undergone different moments of interest by the 
scientific community; anyway, this brief review underlines that knowledge on this topic is not 
only essential, but can represent an interesting research field. New methodologies and 
instruments have been developed in the last ten years, thus permitting to shift the approach 
toward more sensible analysis with respect to those available in the past decades. This led to 
new discoveries and to update some dogma that seemed to be, as per dogma definition, 
untouchable. Instead, the role of sperm cells mitochondria has grown in importance and the 
possibility to study more deeply these organelles showed that they have different roles in 
different species, and could show a really surprising metabolic plasticity that could be well 
exploited to develop new preservation strategies or to permit a better control of in vitro sperm 
activation (capacitation and acrosome reaction). Only in mouse sperm mitochondrial 
metabolism was studied under capacitating conditions (Tourmente et al., 2022), but this 
approach is becoming really precious also to control capacitation in species in which in vitro 
fertilization IVF works well, such as bovine and porcine, and also in species in which only 
recently IVF protocols have been described and actuated (Felix et al., 2022). 

The knowledge of basic sperm metabolism of each species, and the possibility to study at 
individual level the metabolic features will be of absolute interest in the future for the 
formulation of new extenders; current research is looking for new preservation strategies 
(Gibb et al., 2015; Rizkallah et al., 2022) possibly avoiding the need to cool semen to too low 
temperature. This technique could have a great impact on sperm preservation and business, 
but new extenders should be formulated in order to get the best results in terms of sperm 
survival, bacterial growth control and fertility. 
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