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Abstract 
High-throughput sequencing studies have shown the important role microbial communities play in the 
male reproductive tract, indicating differences in the semen microbial composition between fertile and 
infertile males. Most of these studies were made on human beings but little is known regarding domestic 
animals. Seminal bacteria studies made in stallions mostly focus on pathogenic bacteria and on their 
impact on reproductive technology. However, little is known about stallion commensal seminal microflora. 
That ultimately hinders our capacity to associate specific bacteria to conditions or seminal quality. 
Therefore, the aim of this study was to characterize the seminal microbial composition of 12 healthy, 
fertile stallion using next-generation sequencing. Hypervariable region V3 was chosen for bacterial 
identification. A total of nine phyla was detected. The most abundant ones were Bacteroidetes (46.50%), 
Firmicutes (29.92%) and Actinobacteria (13.58%). At family level, we found 69 bacterial families, but only 
nine are common in all samples. Porphyromonadaceae (33.18%), Peptoniphilaceae (14.09%), 
Corynebacteriaceae (11.32%) and Prevotellaceae (9.05%) were the most representative ones, while the 
Firmicutes phylum displayed the highest number of families (23, a third of the total). Samples showed high 
inter-subject variability. Findings previously described in other species notably differ from our findings. 
Families found in human such as Lactobacillaceae, Staphylococcaceae and Streptococcaceae only 
represented a 0.00%, 0.17% and 0.22% abundance in our samples, respectively. In conclusion, 
Porphyromonadaceae, Prevotellaceae, Peptoniphilaceae and Corynebacteriaceae families are highly 
represented in the seminal microbiome of healthy, fertile stallions. A high variation among individuals is 
also observed. 
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Introduction 

Next-generation sequencing has been used in horses to characterize the bacterial flora of 
the digestive tract (Costa and Weese, 2012; Ericsson et al., 2016; Su et al., 2020; Daly et al., 
2001). These studies brought to light the important role microbial communities play in 
maintaining the homeostasis of this complex environment not only in the horses (Costa and 
Weese, 2018) but also in other domestic animal species (Wu et al., 2016; Zhang et al., 2016; 
Rando, 2012; Ng et al. 2010). More recent studies have shown the interaction between bacterial 
flora and the host may contribute to the occurrence of laminitis (Milinovich et al., 2010; Al 
Jassim and Andrews, 2009), colic (Al Jassim and Andrews, 2009; Salem et al., 2019) and stomach 
ulcers (Al Jassim and Andrews, 2009). It has even described that they are able to induce 
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alterations of behavioural and mood status in human beings (Costa and Weese, 2018; Goulet, 
2015). These discoveries have led to the use of probiotics as a prophylactic and sometimes 
therapeutic tool for some digestive conditions in the horse (Coverdale, 2016; Swyers et al. 
2008). These findings have opened the door to study the microbiome in new niches, such as 
lower respiratory tract (Manguin et al., 2020), conjunctive (LaFrentz et al., 2020) or female 
reproductive tract (Barba et al., 2020; Hou et al., 2013). However, little is known regarding the 
commensal flora of the male reproductive tract. That ultimately would hinder our capacity to 
associate specific bacteria to conditions. 

There are very few studies of the male reproductive tract microbiome in humans (Hou et al., 
2013; Liu et al., 2014; Weng et al., 2014) and practically none in animals (Rosenfeld et al., 2018; 
Javurek et al., 2016; Wickware et al., 2020; Serrano et al., 2020; Al-Kass et al., 2020). In spite of 
that, a few studies have already associated the presence of some bacteria families to fertility 
(Hou et al., 2013; Kiessling et al., 2008). In the studies performed in horses, researchers have 
mostly focused on the detection and reduction of pathogenic bacteria in the reproductive tract 
to prevent their spread (Samper, 2009; Al-Kass et al., 2019); whereas some others focused their 
research on associating bacteria genera to its effect on reproductive technologies 
(Moretti et al., 2009; Ortega-Ferrusola et al., 2009; Varela et al., 2018). To the best of our 
knowledge, there is only one article (Al-Kass et al., 2020) describing the seminal microbiome in 
horses. Results vary among those articles, maybe because microflora may depend on external 
factors, such as environment or region (Al-Kass et al., 2020). In order to have broader picture 
of the commensal flora of the stallion reproductive tract, more metagenomic analysis are 
needed. Therefore, the aim of this study is characterizing the seminal microbial composition 
of healthy, fertile stallion in the south of Spain using next-generation sequencing. 

Methods 

Ethical statement 

Animals were raised and handled in accordance with the Spanish law for animal welfare 
(Law 32/07). Animals were not submitted to extra semen extractions for our experiment 
sample collection nor was their daily workflow interrupted. Samples were not collected for the 
purpose of the study. 

Animals and semen collection 

Samples 

Samples were obtained from 12 (seven Andalusian and five Arabian) healthy and fertile 
stallions located in the Equine Breeding Centre of the Spanish Army of Écija (Seville, Spain). 
Stallions ranged in age from 7 to 24 years and were included in the reproductive breeding 
program of the Centre. All the stallions were housed in individual boxes with a straw bedding. 
Faeces were removed from the housing daily. The feeding consisted of oats, commercial 
concentrate and water ad libitum. Animals lived under the same dietary and exercise 
conditions. 

Semen was collected using an in-line gel-filter Missouri artificial vagina, with a mare in estrus 
as a teaser. An inner disposable plastic liner was used with each animal so to avoid cross-
contamination. Semen was regularly collected, two or three times per week, in intervals of at 
least 24 h between semen collections (Monday, Wednesday and Friday) throughout the 
breeding season (from March to July). A total of 12 ejaculates were collected (one per stallion) 
by the end of the month of March. No clinical diseases were reported. All the stallions had 
physiological values of sperm quality parameters. Mean ± standard deviation values of the 
following parameters were: volume = 31.4 ± 21.2 ml; sperm concentration = 276.0 ± 95.1 
spermatozoa/ml; total motility = 80.4 ± 7.9%; and progressive motility = 37.0 ± 10.1%. 
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DNA extraction control sample 

A pattern was created in order to evaluate the quality of the DNA extraction and its 
amplification. It was composed of five field strain species. Rhodococcus equi and Taylorella 
equigenitalis came from the Microbiology Department of Military Veterinary Centre, (Ministry 
of Defence, Spain). The other three strain species came from Colección Española de Cultivos 
Tipo: Staphylococcus aureus (ATCC 43300), Klebsiella pneumoniae (ATCC 10031) and 
Pseudomonas aeruginosa (CECT 108). 

The pattern sample contained 2x107 bacteria, equally distributed among the five species 
(4x106 cells each). Counting was performed with a Neubauer chamber. It was submitted to DNA 
extraction at the same time as the rest of samples. 

Next generation sequencing 

DNA extraction 

Samples were cryopreserved immediately after their extraction. Then, DNA extraction was 
performed using a ZymoBIOMICS® DNA Miniprep kit (Zymo Research, CA) commercial kit. 
Samples were previously submitted to a combination of mechanic and enzymatic-digestion cell 
disruption as described by Bag (Bag et al., 2016). Then, DNA extraction was performed 
following the manufacturer’s instructions. 

Library preparation and sequencing: 

Amplicons were obtained using an Ion 16S Metagenomics® kit (Thermo Fisher, Waltham, 
MA). This kit characterizes five different sets of 16S hypervariable regions, V2, V3, V4, V67 and 
V8. The library was constructed with an Ion Plus Fragment Library kit and amplicons were 
labelled with an XpressTM Barcode Adapters 1-16 kit. Samples were then pooled using Ion 
PGM® (Thermo Fisher, Waltham, MA), HiQ Sequencing kit®, Ion 316 v2 BC® chip and 
sequenced using the Ion 16S™ Metagenomics Workflow in Ion Reporter™ Software. OTUs were 
obtained from the Ion Reporter server system (Thermo Fisher Scientific, Waltham, MA, USA). 

Statistical analysis 

The Ion Reporter server system was used for data analysis (Thermo Fisher Scientific, 2021). 
The α-diversity analysis with Chao 1 non-parametric model to confirm that all potential bacteria 
have been detected (Mira Obrador, 2014). OTUs from hypervariable region V3 was chosen for 
bacterial identification, as it obtained the highest number of copies. Moreover, it has been 
suggested to detect a wider range of bacterial species (Fullston et al., 2015). Then, mean values 
and standard error of the mean were calculated for each phylum. Inter-subject variability was 
calculated with Bray-Curtis dissimilarity index. 

Results 

Control 

The microbiome is described at a taxonomic family level. The observed proportions in the 
pattern were 23.1% for Alcaligenaceae, 31.4% for Enterobacteriaceae, 15.5% for 
Pseudomonadaceae, 27.0% for Nocardiaceae, and 2.7% for Staphylococcaceae. In most of the 
cases, sequenced families have appeared in the expected proportion (20%). Nevertheless, 
Staphylococcaceae lowers its proportion (near 2.7%) in Enterobacteriaceae’s favour (31.4%). 



The seminal equine microbiome 
 

 

Anim Reprod. 2021;18(2):e20200052 4/10 

Microbial abundance and composition 

Table 1 shows the number of valid sequences obtained and the number of which that were 
assigned to different OTUs. The α-diversity analysis show samples were sequenced to the 
plateau (Figure 1), which means that the analysis have virtually located all bacteria present in 
the samples (Espinosa, 2019). The β-diversity analysis shows a high inter-subject variability 
(Figure 2). 

Table 1. Number of valid sequence (VS) and mapped sequences (MS) per sample according to V3 results. 
Numbers correspond to the stallions. Results are expressed as number of copies. 

Stallion VS MS 
1 113651 81924 
2 101979 73542 
3 142745 111842 
4 57464 37400 
5 22609 15790 
6 60555 45921 
7 80441 58957 
8 58750 42277 
9 53504 39195 

10 101524 75815 
11 78380 62325 
12 76634 47306 

 
Figure 1. Rarefaction curves using Chao 1 model. All samples reach to the plateau, which is an indicator 
that all potential families have been detected. 

 
Figure 2. β-diversity using Bray-Curtis dissimilarity index. Samples are uniformly distributed along de 
spectrum. It was not possible to classify animals into subgroups, which is an indirect indicator of inter-
subject variability. 

A total of nine phyla were found. The most abundant ones were Bacteroidetes (46.50%), 
Firmicutes (29.92%) and Actinobacteria (13.58%). The following most common phyla were 
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Fusobacteria (4.50%), Proteobacteria (4.32%) and Spirochaetes (4.10%), but only 
Proteobacteria was detected in all horses. Fusobacteria only appeared in five of them, and 
Spirochaetes in nine. The last three phyla were Synergestes (0.99%), Tenericutes (0.40%) and 
Chloroflexi (0.10%), which only were present in seven, two and one animals, respectively. 

A total of 69 families (Figure 3) were found and nine phyla were found (Figure 4). Only 22 
families out of 69 exceed a 1% presence. In addition, only nine appear to be common in all 
samples. The most common families were Porphyromonadaceae (32.61 ± 18.16%), 
Corynebacteriaceae (11.05 ± 6.10%), Peptoniphilaceae (13.69± 4.28%) and Prevotellaceae 
(10.05 ± 10.83%). The following most common families were Clostridiaceae (3.59 ± 4.22%), XI 
Family, which includes several non-identifiable genera of Clostridia (3.31 ± 5.60%) and 
Peptostreptococcaceae (3.05 ± 5.33%). 

 
Figure 3. Detailed bacteria family composition of the samples. The results are expressed as percentages 
(%). Only common families with a relative abundance above 1% are included separately. Sections in blue 
represents Firmicutes phylum; green represents Bacteroidetes phylum; red represents Actinobacteria 
phylum; grey represents the rest of phyla. 

 
Figure 4. Phyla detected in samples. The results are expressed as percentages (%). 
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Discussion 

In this study, next generation sequencing has been used for characterizing the seminal 
microbiome of stallions. This technique is more efficient for analysing microbial flora than 
culture-based methods, especially for hard-to-cultivate species (Zhang et al., 2016). That is why 
it has been used for characterizing gut microbiome (Su et al., 2020), lower respiratory tract 
(Manguin et al., 2020), conjunctive (LaFrentz et al., 2020). To the best of our knowledge, there 
is only one paper analysing the seminal microbiome in stallions with NGS technology (Al-
Kass et al., 2020). However, authors have stated that there may be variations due to external 
factors. (Wickware et al., 2020; Al-Kass et al., 2020; Tomaiuolo et al., 2020). Therefore, it is of 
the utmost interest to keep exploring seminal metagenomics. 

According to our study, there are four main families that represent the seminal microbiome 
in healthy and fertile stallions: Porphyromonadaceae (Bacteroidetes phylum), 
Peptoniphilaceae (Firmicutes phylum), Corynebacteriaceae (Actinobacteria phylum) and 
Prevotellaceae (Bacteroidetes phylum). Our results greatly concur with the ones found in the 
north of Europe (Al-Kass et al., 2020). However, they plainly differ from studies made in human, 
where gram-positive bacteria prevail (Hou et al., 2013; Weng et al., 2014). With respect to other 
species, they also differ from mice (Rosenfeld et al., 2018; Javurek et al., 2016) and ram 
(Serrano et al., 2020). 

Starting with the Bacteroidetes phylum, there is no a general consensus about its function 
in semen. It has been identified in healthy, fertile men (Hou et al., 2013; Liu et al., 2014), while 
some authors associated the combination of this family and Prevotellaceae with a higher rate 
of reproductive inflammatory conditions (Mändar et al., 2015). In any case, the vast majority of 
human studies leave the presence of Porphyromonadaceae in the background, as its 
percentage is usually less than that of other families. 

The other member from this same phylum is Prevotellaceae, traditionally defined as a 
natural component of vaginal, oral, cutaneous and digestive microflora. This family has been 
correlated with low semen quality by some authors (Weng et al., 2014), whereas others have 
found it to share a niche with healthy flora (Liu et al., 2014; Weng et al., 2014; Mändar et al., 
2015). Our findings concur with the latter ones, as the animals in our study do not show clinical 
signs of disease and have a good semen quality. It is noteworthy to say that Bacteroidetes 
families scarcely appear in classical references. This is because this phylum is mostly composed 
of anaerobic gram-negative organisms. These bacteria are laborious to culture and, therefore, 
have been systematically omitted in culture-based microflora studies. Having pointed that, this 
family has neither been detected in the horse semen in other NGS studies (Al-Kass et al., 2020). 

Regarding Corynebacteriaceae, it has been consistently defined as a natural component of 
seminal flora in humans (Liu et al., 2014; Weng et al., 2014; Mändar et al., 2015; Ivanov et al., 
2009; Jarvi et al., 1996). This concurs with previous studies in the stallion (Al-Kass et al., 2020; 
Varela et al., 2018;, Althouse et al., 2010; Maasen and Christensen, 1995; Pickett et al., 1999; 
Varner et al., 1998). Other authors (Kiessling et al., 2008; Mändar, 2013) state that they are 
commensal bacteria that can become pathogenic when the flora unbalances or when there is 
a high activity of caspases (Ortega-Ferrusola et al., 2009). 

The following four more common families belong to the Firmicutes phylum, Clostridia class: 
Peptoniphilaceae, Peptostreptococcaceae, Clostridiaceae and XI Family. Studies performed in 
humans show that these families are clearly rarer than in our case, excepting Peptoniphilaceae 
(Hou et al., 2013; Sanocka-Maciejewska et al., 2005). The same applies in the case of horses (Al-
Kass et al., 2020). Interestingly, another class of this very same phylum, Bacilli, seems to be the 
most represented one in human semen, with families such as Lactobacillaceae, 
Staphylococcaceae and Streptococcaceae (Rando, 2012; Ng et al., 2010;, Hou et al., 2013; 
Weng et al., 2014; Varner et al., 1998; Fullston et al., 2015; Bromfield et al., 2014; Pasing et al., 
2013; Rando and Simmons, 2015; Rodgers et al., 2013; Rota et al., 2011; Sharma et al., 2010). 
In our findings, these families were only represented at 0%, 0.17% and 0.22%, respectively. The 
only family related to these bacteria with a higher presence in our study was Aerococcaceae 
(1.23%), which has been associated with infertility cases in humans (Hou et al., 2013). 
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Conclusion 

In conclusion, the equine seminal microbiome is principally represented by 
Porphyromonadaceae, Peptoniphilaceae, Corynebacteriaceae and Prevotellaceae. A high inter-
subject variability is also observed. Our results concur with the ones found in other studies (Al-
Kass et al., 2020). However, they differ from studies made in other species (Hou et al., 2013; 
Weng et al., 2014; Rosenfeld et al., 2018; Javurek et al., 2016; Serrano et al., 2020). Further 
studies are needed to fully characterise the natural flora composition of stallion reproductive 
tract. 
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